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ABSTRACT

An increasing national priority on quality in product design and manufacturing
requires new understanding to achieve significant advancement. Fault-tolerant control, a
discipline capable of high-level decision making and task execution, is a necessary
component for ensuring system reliability in the hierarchy of intelligent control systems. In
contrast with current research, redundant control structures provide real-time fault tolerance
and error accountability for systems in an untended manufacturing environment without the
use of a process model. Fault detection and isolation (FDI) is optimized with respect to a
risk or cost function equivalent to the probability of decision error and is generalized to
account for both positive and negative faults within any controller. The resultant test
compares a significant statistic to a derived threshold which is adjusted over the mission to
reflect any change in the reliability of the control structure. The performance of the FDI
scheme is found to be proportional to the failure signal-to-noise ratio. The effect of
multiple faults on the probability of decision error is found to be negligible, assuming an
uniform fault distribution. Analysis of these redundant structures and their associated FDI
and reconfiguration schemes emphasizes a probabilistic set of system states which
represents all a priori uncertainty inherent within the control system. Information theory
defines entropy as a logarithmic measure of system/decision uncertainty. This allows for a
comparison of the effective system performance of redundant structures. The optimal
redundant structure for fault-tolerance is reached by utilizing a highly reliable control
structure at the greatest level of redundancy while maintaining near-perfect FDI at all levels
of operation. This allows maximizing the information rate of the discrete FDI decision
scheme while minimizing the error variance of the controlled parameter. Further, the
average mission or period of working operation is increased due to successive stages of

reduced operation.
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Chapter 1:  The Problem, Method of Approach, and Results

1.1.  The Challenge for Quality

An increasing national priority on quality in product design and manufacturing
requires new understanding to achieve significant advancement. As real-time, computer-
based measurement and actuation systems have increased in complexity, human capabilities
to conceptualize such systems with mathematical models have been challenged. The IEEE
Control Systems Society and the National Science Foundation (NSF) invited fifty-two
eminent contributors in the field of control to a workshop at the University of Santa Clara
in September, 1986. Their perspectives on important research areas, documented in

"Challenges to Control: A Collective View" by editor A. H. Levis, included:

Due to the often unrealistic assumptions that the mathematical model of the
system be completely known and that the model have the form of linear
differential (or difference) equations . . . control theorists are now
challenged to expand their horizons and to extend their concepts and
methods to be applicable to incompletely modeled systems . . . [Levis]

Indeed, current engineering strategies show widespread traditional use of empirically
designed manufacturing elements, described in terms of qualitative domain knowledge as
opposed to quantitative modelling efforts. [Bobrow] Processes which necessitate these
highly complex representations can benefit from equally complex self-organizing (i.e.
intelligent) control structures to accommodate incomplete a priori knowledge and reducible
uncertainties. This "complex process - complex controller” paradigm constitutes the most
advanced automatic control presently realizable, and provides the basis for a productive
research effort to achieve new levels of performance, and hence quality, in manufacturing

enterprises. [Saridis]



Fault-tolerant control, a discipline capable of high-level decision making and task
execution, is a necessary component for ensuring system reliability in the hierarchy of
intelligent control systems. [Saridis] Coverage is the property of a system which defines
its ability to tolerate failures of a specified subset or percentage of its components (i.e. the
degree of its fault tolerance). Fault-tolerant applications that require the most efficient
coverage of any failures at all times, within given limitations on hardware and knowledge,
dictate the use of fault detection and isolation (FDI) schemes to properly reconfigure the

system for continued operation with a minimal loss in performance. Levis writes:

A more general class of control systems which adapt to significant changes in their
environment is ... fault-tolerant control systems. In this class of problems we
admit that one or more key components of the physical feedback system will fail
and that this failure can have significant impact on stability or performance. The
idea is to design the control system so as to retain stability and lose performance in
a gracefully degraded manner. It may be necessary to reconfigure the control
system following the detection of such failures. For example, a real-time decision
will have to be made on whether we should ... accept some performance
degradation or ... concentrate on maintaining stability and perhaps - after the
transients have died out - reconfigure again to achieve optimal performance. A
challenging problem for control theory is to take into account advances in computer
technology and to stimulate the development of real-time and concurrent systems
which allow the implementation of such control strategies in hardware form.

[Levis]
This challenge is taken up in the following thesis on the implementation and analysis of

fault-tolerant control with redundant control structures.

In contrast with current fault-tolerant control schemes, the dual-difference

redundant structure (DDRS) and triple redundant structure (TRS) provide real-time fault




environment without the use of a process model. A major concern during the control of
any system or process is the level of confidence associated with the controlled parameters.
In a paper on the fundamental issues and architecture for autonomous control systems,
Antsaklis also determined the necessity of fault-tolerant control in an environment of

significant uncertainty:

There must be certain features inherent in the autonomous system design. In
addition to supervising and tuning the control algorithm, the autonomous controller
must also provide a high degree of tolerance to failures. Design features should
prevent failures that would jeopardize the overall ... mission goals or safety. This
implies that the controller should have self-test capability ..., tolerance of transient
errors, adjustable fault detection thresholds, reversible state changes, and protection
from invalid external commands. To achieve this, high level decision making
techniques for reasoning under uncertainty and taking actions must be utilized.
[Antsaklis]

The fault-tolerant control structures presented in this thesis are designed to take advantage
of the benefits of redundancy while incorporating these and other design features. These
redundant structures represent the base level in a possible hierarchy of system fault
detection and diagnostic schemes. [Saridis, Antsaklis] Upon validation of the control
structure by FDI algorithms, confidence can be placed in the controlled parameter within
the derived accuracy. This allows a solid base upon which to build further reasoning about
the process or system. With the empirical knowledge provided, the host system can
monitor the process, infer its current state via process models, and reason about future
control needs. This concept highlights the distinction from current fault-tolerant schemes
which utilize an explicit process model as the very foundation of the control hierarchy and
have been found to be highly sensitive to uncertainty or error within the process model.

[Emami-Naeini, Horak]




The FDI algorithms designed for the redundant control structures are based upon a
mapping from the observable or measurable space of the control system to a
hypothesis/decision space and therefore implies a decision-making process. Levis refers to
this form of hypothesis testing as a "hybrid model approach” incorporating both higher
discrete levels of information and the continuous data received at the process level.

Multiple model hypothesis testing is a very important process in symbolic
reasoning. In such problems we have a discrete set of alternative interpretations of
data, we have models for each, and we have optimal processors for each that allow
us to produce statistics that form the basis for efficient and rational assessment of
which alternative is most likely to be correct. ... This hybrid model approach
provides a framework in which it is possible to think about fusing all types of
knowledge and information. It also very naturally reduces data and knowledge to
statistics as the basis for higher-level reasoning and is well set up for parallel
processing. ... the modelling of (this) uncertainty is to be "structured” so as to

exploit all relevant a priori information about the plant to be controlled, including
not only numerical, but also qualitative and linguistic descriptions. [Levis]

Analysis of these redundant structures and their associated FDI and reconfiguration
schemes emphasizes a probabilistic set of system states which represents all a priori
uncertainty inherent within the control system. This status information, presented to the
host system, provides a confidence metric with each controlled parameter and thus
facilitates qualitative reasoning about the process for goal-oriented control purposes
[Garrett, Matejka, Fox]. For example, in a qualitative control system which can select
among alternative control actions during a specific process instance to achieve process
goals, the availability of this controller status information can meaningfully influence this
choice by quantifying the confidence associated with each measured variable. Hence, the
hierarchy of intelligent controllers combines local, low-level observation and broader,
higher-level reasoning and planning in order to ensure continuous and efficient system

performance and knowledge.




Entropy provides the structure which Levis sought in a model of uncertainty ... a
structure in which different knowledge sources can be repfesented, combined, and
compared. The cgncept of entropy has a rich history that defies disciplinary boundaries in
its application. Information theory defines entropy as a logarithmic measure of the
randomness or 'choice’ involved in an event or the prior uncertainty of the outcome of an
experiment. Shannon's celebrated paper on the "Mathematical Theory of Communication”
in the Bell System Technical Journal, 1948, is generally considered to be the first detailed
exposition on information theory. [Shannon] Saridis and Valavanis use entropy as an
unified quantification of disorder in each of three levels (i.e. execution, coordination, and
management) of a heirarchical system based on the principle of "increasing intelligence with
decreasing precision". In an intelligent controller, the control action that will decrease the
entropy of the system is initiated. [Valavanis] Stephanou found that entropy provides a
quantitative criterion for measuring the effectiveness of a consensus obtained from the
pooling of evidence from independent knowledge sources. This focusing of knowledge
allows a subsequent reduction in an experiment's uncertainty or entropy. [Stephanou] In
this thesis, this metric of uncertainty allows for comparisons of the effective system
performance for different redundant structures. For example, system entropy is found to
decrease with each level of redundancy when a near-optimal FDI scheme is employed. In
addition, the benefits of active redundancy over passive _techniques such as majority-voting
is clearly observed. This widespread application of entropy attests to its fundamental
nature and allows for linkage into a more comprehensive system representation of

uncertainty by incorporation of other system entropies.




1.2. Method of Approach

In Chapter 2, an analysis' of the typical control structure by Garrett describes each
functional component of the system and provides a tabular form for itemizing, quantizing,
and minimizing worst-case errors of an average, random, or systematic nature. [Garrett]
This error budget presents all error sources and their bounds in a standard format to allow
comparison and combination of all system errors. The result is a stationary, Gaussian error
function of minimal mean and variance conditioned on the reliable performance of the
control structure. This probability density function defines the uncertainty of the control
structure at any given point in time of its operation. However, we are also uncertain as to
whether the control structure is operating properly at this stage in its lifetime or mission.
The following chapter reviews reliability theory and proposes a failure rate budget (the
conceptual equivalent to the error budget) to account for all sources of failure within the
control structure. Reliability is represented by a maximized exponential density function of
time. These models provide a complete concept of all a priori knowledge of the control
structure. It is found in Chapter 5 that these functions conform to Jaynes' method of
maximum entropy where a chosen model remains minimally prejudiced with respect to any
missing information. Thus, our error and reliability models exhibit a dualism in their
origination and application. Further, these models can be optimized with respect to each
application based on the give-and-take between the costs of various sources included in the

error and failure rate budgets.

In Chapter 3, we also find that redundancy allows further improvement of the
control structure's error and reliability. For example, the deviation in the error function of
the control signal is reduced through the averaging of the redundant outputs, owing to the
essentially uncorrelated error contributions of eaph structure's elements. This reduction in
error variance is shown to be optimal with respect to redundant hardware for two

structures. Analysis of redundant structures shows additional benefits in improved
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reliability occurring with each level of redundancy. Each additional structure in a redundant
configuration provides an order of magnitude improvement in the reliability of the
configuration during short term missions or earlier periods of extended operation.
However, these benefits are only possible under the unlikely assumption of perfect fault
coverage and, without such ideal conditions, are achieved at the cost of increased entropy
or uncertainty with each level of redundancy (Chapter 5). An attempt to recoup these

losses via fault detection and isolation techniques is presented in Chapter 4.

In Chapter 4, the dual-difference redundant structure (DDRS) and triple redundant
structure (TRS) are designed to provide fault-tolerant control (i.e. fault detection, isolation,
and reconfiguration) to the extent of their capabilities. Active redundancy achieves greater
fault coverage than the masking techniques of passive redundancy (e.g. TMR or NMR) in
that fault occurrences are detected and not merely screened. The dual-difference redundant
structure provides quick and efficient front-end fault detection with a simple difference test,
yet fault isolation is only possible to the extent which the simplex fault detection schemes
provide fault coverage. The triple redundant structure, however, provides both efficient
fault detection and isolation with a more complex FDI scheme. Additionally, limit and rate
checking will detect extreme bias and noise conditions which comprise the majority of
spontaneous or transient faults. Reconfiguration consists of a graceful and recoverable
reorganization of the system to a structure of lesser redundancy and reduced performance.
Hence, each redundant control structure is a subset of all structures of greater redundancy.
For example, the TRS is reconfigured to the DDRS upon fault detection with the two
remaining valid controllers. In this manner, fault-tolerant control is achieved. However,
any problems occurring within the process or to the signal outside of the control structure
can not be considered a fault. Deviations of the measured parameter from expected values
due to these problems will be transparent to the FDI scheme and must be detected by the

host computer at system level.




The fault detection and isolation (FDI) scheme assumes a classical, M-ary
hypothesis test with a fixed, singular data sample. Thus, there are M possible aliematives
or event-hypothesis pairings each time a decision must be made. With any decision-
making process comes the possibility of decision errors; in this case, there is an inherent
give-and-take between the two decision errors of false alarms and missed detections. With
any FDI scheme, it is found that the probability of these decision errors is inversely
proportional to the failure signal-to-noise ratio (SNR). This analysis is concerned with the
worst-case magnitude of f (fynjn) which is the smallest fault (and, thus, the hardest to
detect) of accountable cost for the current application. It is further generalized to account
for both positive and negative faults within any controller. A second concern of decision
error is the possible missed detection of certain multiple faults which are hidden from the
FDI scheme. For example, the difference test is insensitive to a dual fault where a fault of
approximately equal amplitude occurs on botﬁ controllers. This analysis assumed a
uniform fault distribution across the space of all possible faults and found the effect of
multiple faults on the probability of decision error to be negligible. The resultant set of
system states and their associated probabilities is determined from a decision tree for each

redundant structure based on its FDI and reconfiguration schemes.

Several fault detection and isolation schemes are examined for each redundant
structure. The FDI scheme can be optimized by using a generalized likelihood ratio test
(GLRT) which is based on a degenerated Bayes criterion. This analysis utilizes the special
cost assignment where correct decisions incur no penalty and incorrect decisions incur the
same penalty. With this cost assignment, risk is equivalent to the probability of decision
error. The likelihood ratio is determined directly from the ratio of the marginal or
conditional densities of the parameter or parity vector under either event. Another possible
FDI scheme is based upon the classical Neyman-Pearson criterion of radar detection

theory. Here, the conditional probability of false alarms Pgp is constrained to remain less




than some arbitrarily small value a, known as the level or significance level of the test, and
then the conditional probability of fault detection Pp is maximized to some value (1-B),
known as the power of the test. The resultant test for either FDI scheme compares a
significant statistic (e.g. the radius or absolute difference) to a derived threshold and is thus
generalized in order to account for a fault in any controller. This threshold is held constant
by the Neyman-Pearson criterion and is completely defined upon choosing the level of the
test (o). For the Bayes criterion, the threshold is varied according to the prior event
probabilities of the control structure in order to minimize the probability of decision error.
For example, the threshold is originally made quite large compared to the fault magnitude
while the probability of normal operation is high and is subsequently pulled closer to the

origin as the probability of a structure fault becomes predominant.

In Chapter 5, we analyze all relevant a priori uncertainty or entropy within the
control system. The minimized Gaussian error function and the maximized exponential
reliability function provide a complete concept of all a priori knowledge of the control
structure. The marginal or conditional probabilities of the FDI schemes describe the
performance statistics associated with the redundant structure. The resultant set of system
states and their associated probabilities, as illustrated by the decision tree, represents all a
priori uncertainty in the control system. Information theory defines entropy as a
logarithmic measure of the randomness or ‘choice' involved in an event or the prior
uncertainty of the outcome of an experiment. This metric of uncertainty allows for

comparisons of the effective system performance for different redundant structures.




1.3.

Results and Conclusions

This thesis concerns the implementation and analysis of redundant structures in
fault-tolerant control. Complex, intelligent control structures are sought which:
provide robust, optimized fault tolerance; can be implemented efficiently upon any
process; and do not require a process or signal model. These structures can be
utilized in a broad range of applications and define a unifying base for the

hierarchical architecture of autonomous control.

In contrast with current fault-tolerant control schemes, the dual-difference
redundant structure (DDRS) and triple redundant structure (TRS) provide real-time
fault tolerance and error accountability for sensor systems in an untended
manufacturing environment without the use of a process model. The DDRS
provides quick and efficient front-end fault detection with a simple difference test,
yet fault isolation is only possible to the extent which the simplex fault detection
schemes provide fault coverage. The TRS, however, provides both efficient fault
detection and isolation with a more complex FDI scheme. Reconfiguration consists
of a graceful and recoverable reorganization of the system to a structure of lesser
redundancy and reduced performance. In this manner, fault-tolerant control is

achieved.

Full redundancy of the control structure is not always feasible. The additional
hardware requires more expense and working volume than can sometimes be
afforded. In fact, space limitations and expense are two major reasons why
redundant structure configurations are avoided and research has shifted to analytical

redundancy.
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Fault detection and isolation (FDI) is optimized with respect to a risk or cost
function equivalent to the probability of decision error. The FDI scheme is
generalized to account for both positive and negative faults within any controller.
The resultant test compares a significant statistic to a derived threshold which is
adjusted over the mission to reflect any change in the reliability of the control

structure.

The performance of the FDI scheme is found to be proportional to the failure signal-
to-noise ratio. The effect of multiple faults on the probability of decision error is

negligible, assuming an uniform fault distribution.

Limit and rate checking will detect extreme bias and noise conditions which
comprise the majority of spontaneous or transient faults. Reconfiguration consists
of removing the faulty controller from the output estimation scheme yet still
including it as a voter in the FDI scheme. The faulty controller is simply returned to
valid status upon a successful test. This reconfiguration scheme allows recovery
from false alarms and transient faults and maintains the independence between

successive tests over the mission.

The minimized Gaussian error function and the maximized exponential reliability
function provide a complete concept of all a priori knowledge of the control
structure. The marginal or conditional probabilities of the FDI schemes describe the
performance statistics associated with the redundant structure. The resultant set of
system states and their associated probabilities, as illustrated by decision tree,

represents all a priori knowledge of the redundant structure.

11




10.

Entropy provides a logarithmic measure of system/decision uncertainty. This
metric allows for a comparison of the effective system performance of redundant
structures. Further, the widespread application of entropy attests to its fuhdamental
nature and allows for linkage into a more comprehensive system representation of

uncertainty by incorporation of other system entropies.

The optimal redundant structure for fault-tolerance is reached by utilizing a highly
reliable control structure at the greatest level of redundancy while maintaining near-
perfect FDI at all levels of operation. This allows maximizing the information rate
of the discrete FDI decision scheme while minimizing the error variance of the
controlled parameter. Further, the average mission or period of working operation

is increased due to successive stages of reduced operation.

For a system with zero shutdown cost and high false alarm cost, the general
performance of a redundant structure is dependent upon the quality of the tests and
proper design of the decision scheme. Results indicate the need to switch the FDI
decision scheme for different stages of the mission in all but the most perfect case.
Any detection schemes of poor or worse quality are generally not utilized.
However, a redundant structure with shutdown capability must incorporate at least

one quality test in order to improve upon single structure performance.

Novel contributions of this thesis include:

Analysis of the sensitivity of the FDI scheme to multiple faults.

A more optimal fault detection scheme for triple redundant structures.
Analysis and comparison of the uncertainty within redundant structures.

12




Chapter 2:  Error Analysis of the Control Structure

Computer applications have been widespread since the first real-time minicomputer
implementation for process measurement and control in 1958. Progress has been
especially rapid since the introduction of the microcomputer. Successful integration of the
computer system within the process control loop relies directly upon accurate input/output
(I/0O) interfacing. Yet many current designs of data acquisition and control actuation are
based on traditional "cookbook" methods. Economic and performance requirements
demand improved error accountability and reduced product variability through a
comprehensive quantitative analysis of the interface from sensors to actuators. This
mathematical model-based approach provides a definitive framework on which to build
intelligent control. A typical control structure is presented in Figure 2.1. This structure
can represent either the inner-loop digital control of the process (Figure 2.2) or an outer

loop observer/planner to reason qualitatively about the system (Figure 2.3).

Signal Conditioning Signal Acquisition Controller/Observer/Planner Signal Interpolation

Sample/Hold
12 bits
Lowpass | 5~ Analog/Digital j Digital/Analog
Filter .jT'_ Convertor | Convertor
Computer
Ay(®) Ay(KTs) Yo.u ——J Y

Figure 2.1 Typical Control Structure
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Interpolation[———>|  Process

Computer

12 bits

Signal Signal
Acquisition D Processing -

Figure 2.2 Inner Loop Control

Qualitative Observer/Planner
12 bits
. L Signal
Signal X Knowledget Procgssin g/
Interpolation Base Acquisition
Y
J
PID

u y

Controller %1 Process @

% = State Estimates

Figure 2.3 Outer Loop Observer/Planner
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An analysis by Garrett of the typical control structure describes each functional
component of the system and provides a tabular form for itemizing worst-case errors.
[Garrett] This error budget presents all error sources and their bounds in a standard format
to allow comparison and combination of all system errors. Thorman's analysis of an
existing control structure is presented in Figure 2.4 (see also Appendix A) as an example of
an error budget. [Thorman] Three error characteristics are encountered in practice:
average, systematic, and random. Average error is the mean value of parameter variation,
as represented by hardware and sampling errors. Systematic errors are those which vary as
a function of operating conditions, such as device temperature drift and intersample error.
Random errors are parameter variations possessing a probability density function (pdf),
such as signal quality and device/system noises. All values are given in terms of percent of
full scale measurement (%FS) in order to provide a common scale for comparisons. The
Central Limit Theorem dictates that the pdf of random, uncorrelated errors is approximated
by a normal or Gaussian distribution over a large (infinite) number of samples. The
characteristic bell-shaped curve, as depicted in Figure 2.5, is completely defined by its
mean (1L = summation of all average errors) and standard deviation (G = root-sum-square of
all random and systemic errors). This orthogonal summation of component Gaussian
distributions is due to the independent or uncorrelated nature of the error sources (the RSS
cross-product terms are zero). [Papoulis, Peebles] Error terms may now be quantified and
combined to provide an overall measure (or window) of performance for the current design
and environment of the control structure. Equation 2.1 presents the conditional error
density function for the analyzed control structure given that the structure is reliable or
functioning properly (Section 3.2). This window of performance is the basis for our fault

detection scheme discussed in Chapter 4.
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System Element

Error (%FS)

Sensor linearization 0.0111
Cold junction compensation 0.0222
Input RC filter "0.0001
Signal quality 0.2370
OP-07 amplifier 0.0370
CMOS multiplexer 0.0110
A/D converter 0.0066
Intersample 0.0319
Sinc 0.0150
Aliasing 0.2205
Mean value (1) 0.0484
RSS value (0) 0.3276
Existing measurement error bound 0.3760 %FS
6.77 °C)

Figure 2.4 Example Error Analysis for a Control Structure
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Our attention now turns to achieving the design with the lowest error bound and,
therefore, the best performance. The most efficient estimator of the control signal has the
smallest variance (62) in the error. Error variance can be minimized through proper use
and configuration of each system parameter and component. The following sections are
devoted to the understanding, quantization, and minimization of the major error sources
within the control structure. Our end result is a stationary Gaussian error function with

mean . and minimal variance 62 associated with the given control structure and conditioned

on its normal operation (i.e. no faults).
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2.1.  Average Filter Error

Standard signal conditioning practice dictates the need for a lowpass filter whose
cutoff frequency is placed at the highest frequency of interest in the system. Requirements
for signal bandlimiting in data acquisition and conversion systems include signal quality
upgrading (section 2.2) and aliasing prevention (section 2.3.3). However, when a filter is
superimposed on the measured signal, filter gain and phase deviations from the ideal result
in a signal amplitude error that constitutes component error. Filter gain error is the primary
source of error for both DC and sinusoidal signals because single line spectra are
unaffected by filter phase nonlinearities. Laube analyzed the passband gain deviation for
three common filters with reference to 0 Hz (Figure 2.6). [Laube] Most applications are
best served by the 3-pole Butterworth filter which offers good stopband attenuation and
0.2%FS error for 50% spectral occupancy of the passband. Of significance is that small
filter component error can be achieved, with a small sacrifice of the total filter bandwidth,

by restricting signal spectral occupancy to a fraction of the filter cutoff frequency.

14 —
12
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Figure 2.6 Passband Gain
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A
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2.2. Signal Quality

The basic signal conditioning structure of the preamplifier and filter is commonly
used to reduce the interference of unwanted signals (noise). Garrett analyzed signal
corruption due to random Gaussian noise or coherent sinusoidal interference. [Garrett] The
signal-to-noise ratio (SNR) is a dimensionless ratio of signal power to noise power which
provides a measure of the interference. Equations 2.2 - 2.5 allow determination of the
filter output SNR by accounting for the effects of signal conditioning and either random or
coherent noise on the measured input SNR. SNR will be expressed as the squared rms
ratio of full scale signal amplitude to maximum noise amplitude (assuming equal resistance
for both). In Equation 2.3, the resistances to the signal and noise sources within the
amplifier are represented by the differential and common-mode impedances, respectfully.
The amplifier's common-mode-rejection-ratio (CMRR) is squared in order to convert its
ratio of differential to common-mode voltage gains into a power ratio. The filter's
efficiency (k) represents its approximation to ideal matched-filter signal conditioning with

respect to random interference (Equation 2.4) and any coherent sinusoidal interference

(fooh) beyond the filter's cutoff frequency (fc) will be greatly attenuated (Equation 2.5).

2
Vs
diff dc rms .
input Vom ry — (Equation 2.2)
R .
SNR = SNR , x CMRR?  * cm (Equation 2.3)
e input Raiff
fhi .
' = n2.4
Filter SNR _ . SNR o * k * - (Equatio )
o}
2n
fcoh (Equation 2.5)
Filter SNR = * [1 + _2_) ] qua .
. coherent SNR amp ( £

c
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The filter output SNR is used directly in determining the signal quality (equations
2.6,2.7). The square root of the SNR is the ratio of full scale signal-to-noise amplitudes.
For coherent interference, signal error (%FS) or the ratio of full scale noise-to-signal

amplitudes is easily found from the inverse of the SNR square root (Equation 2.6).

A
\Y
Az = Az s - _coh
€con 5 100% v, 1008
100%FS .
= (Equation 2.6)
J SNR coherent
t

For random Gaussian noise (Figure 2.7), the signal error pdf must be evaluated at the noise
region (AA) centered about the true signal amplitude (A) in order to achieve 68%
confidence (i.e. + one standard deviation) in accordance with our signal error distribution.
The erf function approximates the area (probability) under the standard Gaussian curve
(zero mean and unit variance) within some region centered about the mean. [Schwartz]
Transformation to the standard distribution (x transformed to z) requires normalization of
the delta region by full scale conditions (the SNR square root). Here, the erf function is
given in terms of the Q function which represents, in a tabular form, the area under the
curve for all values greater than z. [Shanmugam] When erf(z) is evaluated at 68%
probability, the error contribution due to random interference can be determined

(Equation 2.7).
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Figure 2.7 Random Gaussian Interference
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2.3. Sampled Data

Digital transmission of analog signals is possible by virtue of the sampling theorem
which tells us that an analog signal can be reproduced from an appropriately spaced set of
its samples. True reproduction of the signal requires a number of ideal conditions:
bandlimited, continuous signal; infinite, impulse sampling; and ideal, lowpass
interpolation. Most physical signals may be considered bandlimited due to the small
amplitude of high-frequency components. Practical application and system stability
requirements enforce sampling of finite rate and pulse width. The ideal interpolation
function cannot be physically realized because its noncausal impulse response requires an
output that anticipates its input. Therefore, in practice, these factors make it impossible to
exactly reproduce a continuous signal from the sampled signal even if the sampling theorem

is satisfied. [Kuo]
2.3.1. ZOH Amplitude or Sinc Error

Convolution of the analog signal and an instantaneous sampling function leads to a
spectrum consisting of the original baseband spectrum of the signal and its replication
around each of the harmonics of the sample frequency. For sample-and-hold (S/H)
applications, sinc attenuation of these images occurs due to the transfer function of a zero-
order-hold (ZOH). In Figure 2.8, Kuo derives the transfer function and frequency domain
representation for a ZOH. [Kuo] In Figure 2.9, Garrett shows the effect of the sinc
attenuation on a sampled sinusoidal signal. [Garrett] The ZOH behaves essentially as a
nonideal lowpass filter, imposing signal amplitude and phase error within the bandwidth
(BW). Clearly, the accuracy of the ZOH as an extrapolating device depends greatly on the
sample frequency. Garrett approximates the error imposed by sinc attenuation with the
average baseband amplitude error expressed in %FS departure from unity gain (Equation

2.8). [Garrett] As the sample frequency fg approaches the spectral occupancy of the signal,

the sinc error becomes more predominant.
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2.3.2. ZOH Phase or Intersample Error

The step-interpolation of the ZOH assumes the last sampled value is true until the
next sample. Evaluation at the sample frequency of the phase term of the ZOH transfer
function determines that the sampled signal exhibits an average time delay equal to half the
sample period. Intersample error is the variation between the actual signalv and its ZOH
step-interpolated representation. In Figure 2.10, Garrett depicts the intersample error for a
sampled sinusoidal signal due to the ZOH signal delay. The worst-case intersample error is
found by Garrett through the following set of equations working in the time domain.
Maximum peak-to-peak (pp) error is found assuming a sinusoidal signal at its maximum

rate-of-change zero crossing (Equation 2.9).

dv
Avpp = Ts* G¢ intersample error (pp)
= T * T Vpksin(ZTCBWt)
t=0
= 2T TgBW V,, (Equation 2.9)

Conversion to root-mean-square (rms) error by Equation 2.10 requires normalization by
the signal's sinusoidal pp/rms factor and the intersample triangular pp/rms factor due to the

error waveform in Figure 2.10.

2 T BW V
Av__= intersample error (rms)

2V (Equation 2.10)

Finally, intersample error is provided in terms of %FS (Equation 2.11). [Garrett]

e Av
intersample VFS/J-Z—- 100%FS

VZ TBW Y
- Pk 100%Fs (Equation 2.11)
V6 fsVpg
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Due to the poor interpolation of the ZOH, intersample error contributes greatly to the

system error budget. Its minimization requires a high fs/BW ratio or a more ideal filter

(see section 2.4) to provide smoother signal recovery between samples.
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Figure 2.10 Intersample Error




2.3.3. Aliasing Error

By the sampling theorem, the minimum sample rate (fg) allowing signal

reconstruction is twice the signal bandwidth. Infinite sampling is ideal, but practical
application and sy:tern stability enforce a finite maximum rate. As the sample frequency is
reduced, samples move further apart in the time domain and images move closer in the
spectrum. Signal aliasing, or spectral overlap of the baseband and its images, occurs when
the folding frequency (f, = fg/2) meets the baseband. In general, sample frequency can be

set high enough to readily avoid this problem of signal aliasing. [Kuo]

Of greater concern and complexity is noise aliasing. Coherent and random noise
sources above the folding frequency are heterodyned within the signal baseband as a
consequence of the convolution of noise and the sampling function (Figure 2.11 by
Garrett). This generation of intermodulation distortion cannot be removed by later signal
conditioning. The pre-sampling filter used for signal quality upgrading (Section 2.2) is our
only protection against noise aliasing. The filter of order n will attenuate all unwanted
noise outside its cutoff frequency in order to substantially reduce undersampling. This
observation can also be made from the aliasing error equations derived by Garrett
(Equations 2.12 - 2.15). [Garrett] Aliasing error due to coherent interference in the source
band m (Equation 2.12) is determined from the heterodyned noise amplitude after its

attenuation by the filter and the sampling sinc function.

o -1/2 -
e . Vson 100%FS [1 . (fcoh )Zn] . ( | mfs—£con| )
co s1inc
alias Vrs feo s

where n = filter order (Equation 2.12)

m = noise source band
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Aliasing error due to random interference up to the amplifier's cutoff frequency (fhi)
(Equation 2.15) is determined from the SNR as per Equation 2.7. The power of the aliased
random noise is approximated in Equation 2.13 by summation of the attenuated noise
amplitudes, squared for power, at each harmonic. Note that heterodyned random noise
sources may be considered out to the first harmonic (m = 1) only due to the filter

attenuation.

£1/ Es )

N _ Vrandom 100%FS l— mf 2n -1
alias = v Ll + o

FS c

m=1
(Equation 2.13)
Vi 2 ( )
_ e (rms )
SNRrar;dom s (Equation 2.14)
alias Naiias
£ 3 100%FS V 2
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2.4. Signal Recovery or Interpolation Error

Our error analysis in previous sections focussed on the conditioning and digital
encoding of a continuous analog signal for subsequent manipulation within a computer.
Yet, the design/analysis of computer real-time data conversion and recovery systems must
be considered jointly. Signal recovery involves a digital-to-analog converter (DAC)
followed by a bandlimiting function (e.g. linear first-order-hold (FOH), RC orButterworth
filter, closed-loop control system, etc.) to attenuate the repetitive sampled-data frequency
spectra down to its true baseband spectra (Figure 2.12 by Garrett). By itself, the DAC
merely provides the ZOH step-interpolated representation of the signal with its associated
amplitude and phase error (assuming zero computational delay). The output interpolator
will provide signal filtering more ideal than the ZOH (see section 2.3 and the example
error budget Figure 2.4). By including this improved interpolator, an error budget for the
entire control structure will allow replacement of the large intersample error of signal

conversion with the interpolation error of signal recovery.

N
1 N .
S/H e | V;dt Linear
Rc j ™~ Interpolator
Output ¥,
Original
Signal | ‘ ﬁ
~
Data Step
24
Bus :> D/A ™~ Interpolator
Output ¥V,
i
1t =] | =
!
- . \‘\
R R R ™. Filter
AN _L MW AN _L + p Output ¥,
G ) |
I I [\] 2r 4T 6T

Time (Seconds)

Figure 2.12 Signal Recovery Techniques




Garrett derives the interpolation error in the frequency domain from the achieved

mean-squared-error (MSE) of the sampled-data signal. [Garrett] The MSE relationship has

the dimension of rms volts squared and is depicted by signal image spectra existing above

the baseband. For an input sinusoid, the MSE of the DAC output is the infinite sum of

each spectral image's power as attenuated by the sinc amplitude response of the ZOH

(Equation 2.16). This representation of the unwanted spectral images or noise can be

approximated by considering only the first term with a constant 1.644 multiplier (Equation

2.17). [Brockman]

MSE

MSE

sincz(k - ]—B-Vl) + sincz(k + l—?’ﬂ)
L g fq

= 1.644 V.o _sincz(l - -Bf—:T) + sinc2(1 + B?Zi)

2
(rms)

2
(rms)

(2.16)

(2.17)

The output SNR and interpolation error (Equations 2.18,2.19) for a coherent signal (as per

section 2.2) are computed directly from the signal MSE.

interpolation

SNRout

€
interpolation SNR

2
Ves /2 (rms)2

100%FS

out

V2 VMSE

Vrs

]
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This frequency-domain approximation for the DAC interpolation error can be proven

equivalent to our time-domain approximation of intersample error (section 2.3.2) under
proper operating conditions (large f;/BW ratio).
fS

When TB_W_ > 10 (proper operating conditions):

interpolation T Vi.644 [ (-f—-) + (‘ T) :I
s s

Vrs
V2 BwvV
pk o
= 100%FS = €
1,_6_fs Veg intersample

The interpolation/intersample error of the system is reduced upon considering the output
filter's further attenuation of the signal's spectral images (Figure 2.13 by Garrett). A
comparison of the performance of four output interpolators (Figure 2.14 by Garrett)
highlights the convergence, with increasing order of interpolator, towards ideal signal

Tecovery.

One concern in using an output interpolator is the associated time delay or phase lag
of the signal-smoothing component. A basic tenet of control engineering is that this delay
leads towards system instability. We can sidestep this problem by considering the intrinsic
bandlimited response of the closed-loop system. For example, a first-order system
response can be characterized by a single-pole RC filter which would perform as an
improved interpolator during signal recovery. Interpolation error is determined with the

RC filter equation of Figure 2.13.
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2.5. Conclusions

The analysjs of a typical control structure provides a tabular form (or error budget)
for itemizing, quantizing, and minimizing worst-case errors of an average, random, or
systematic nature. The result is a stationary, Gaussian error function of minimal mean and
variance conditioned on the reliable performance of the control structure. This probability
density function defines the uncertainty of the control structure at any given point in time of
its operation (i.e. what exactly is the value of the control signal u?). However, we are also
uncertain as to whether the control structure is operating properly at this stage in its lifetime
or mission. This uncertainty is represented by the probability density function of the
control structure’s reliability as a function of time. The following chapter reviews
reliability theory and proposes a failure rate budget (the conceptual equivalent to the error

budget) which will be the basis for the reliability pdf of the control structure.
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Chapter 3:  Analysis of Redundant Structures

Human capabilities to conceptualize many systems with accurate, real-time process
models have been challenged. Instead of modelling the process, an error analysis of the
control structure provides a minimized Gaussian error function (Chapter 2) by accounting
for all sources of error in a tabular form. In a similar fashion, a reliability analysis of the
control structure provides a maximized exponential reliability function (Section 3.3) by
tabularizing all component failure rates. These models provide a complete concept of all
a priori knowledge of the control structure. Entropy provides a measure of this a priori
knowledge or, more appropriately, lack of knowledge (i.e. ignorance/uncertainty) in terms
of the modelled probability functions (Chapter 5). It is found that these functions conform
to Jaynes' method of maximum entropy where a chosen model remains minimally
prejudiced with respect to any missing information. Thus, our error and reliability models
exhibit a dualism in their origination and application. Further, these models can be
optimized with respect to each application based on the give-and-take between the costs of

various sources included in the error and failure rate budgets.

Redundancy allows further improvement of the control structure's error and
reliability. For example, the deviation in the error function of the control signal is reduced
through the averaging of the redundant outputs, owing to the essentially uncorrelated error
contributions of each structure's elements (Section 3.2). This reduction in error variance is
shown to be optimal with respect to redundant hardware for two structures. Analysis of
redundant structures shows additional benefits in improved reliability (Section 3.4)
occurring with each level of redundancy. Each additional structure in a redundant
configuration provides an order of magnitude improvement in the reliabilify of the

configuration during short term missions or earlier periods of extended operation.
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However, these benefits are only possible at the cost of increased entropy or uncertainty
with each level of redundancy (Chapter 5). An attempt to recoup these losses via fault

detection and isolation (FDI) teéhniques is presented in Chapter 4.

The Dual-Difference Redundant Structure (DDRS) is based on two identical control
structures (Figure 3.1). Redundancy may be in part (semi-redundancy, Figure 3.2) or in
full (from sensors to actuators) for the control structure presented in Chapter 2 (Figure
2.2). As with a single control structure, the DDRS may be implemented directly within the
inner loop for digital control (Figure 3.3) and/or removed to an outer loop to observe the
process (Figure 3.4). Note that the process is not included within the DDRS. This
becomes a key issue in Chapter 4 which highlights the direct, intuitive nature of our fault
detection scheme and distinguishes it from other current research which emphasizes

process modelling.
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Figure 3.1 Dual-Difference Redundant Structure
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3.1. Redundancy

Traditional majority-voting schemes dictate the use of redundant control structures
for fault-tolerant control. Redundancy is defined as the property of a device or system
wherein it has more than one means of performing its function. This redundancy consists
of spare modules, complete spare hardware structures, or analytical models which are
available to mask faults (passive redundancy) or be switched on-line in the place of faulty
modules or structures (active redundancy). For active redundancy, these spare systems
may be 'hot' (i.e. continuously processing) and can therefore be switched in to control the
process with little or no disruption. Status information may be shared between redundant
structures to verify their performance and averaging will provide a best estimate of the
control output. If a fault is detected, system reconfiguration entails either switching the
faulty structure off-line or simply not including it within the averaged output; thereby,
continuous system control is maintained but at reduced efficiency. Synchronization allows
this sharing of data between redundant structures on a real-time basis and minimizes the
interruption in active control of the process during switchover. In a loosely coupled
system, the processors would run asynchronously due to their separate clocks; therefore
each processor would have to stop at intermediate places called checkpoints so that they
could check on the each other's performance. An alternate form of active redundancy
allows the spare systems to be 'standby’ (i.e. not processing) but this can cause a much
larger switchover delay. Here, the spare system can monitor the process and take over
when a lack of control is detected. System reconfiguration entails utilization of the spare
modules or structures for piecewise replacement of faulty parts, thereby allowing continued

system control at the same efficiency but only after a sometimes substantial delay. [Walker]

Triple modular redundancy (TMR) is the most common form of passive
redundancy. Three hot, identical control structures are used to mask a fault on any single

structure. A mid-value selection algorithm selects the middle value of the three output
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control signals. This algorithm provides essentially perfect coverage for the first failure,
since in order for a failed structure’s signal to be selected for control of the process it would
have to be in the middle of the two valid structure’s signals. In addition, this algorithm
allows continuous system control with zero recovery time for the first failure. Finally, this
algorithm requires no intensive computations or processing because no fault detection is
attempted and therefore no computer is required. It is this simplicity of the TMR concept
that has made it one of the most popular designs for fault-tolerant control. The primary
disadvantage of TMR is that it is unlikely for the mid-value selection algorithm to select the
valid output signal in the event of a second failure (1 in 3 chance). The TMR concept can
be expanded to N modular redundancy (NMR) so that (N-1)/2 failures can be tolerated.
For example, the space shuttle’s main computer uses a 4MR scheme. However, the use of
passive redundancy to screen out the effects of the first failed structure is in many cases an

insufficient response to the presence of a failure in a system. [Walker]

The DDRS is based on two identical control structures (Figure 3.1) whose
sampling is synchronized by a common sync pulse from the computer. Both structures of
the DDRS are hot and their outputs are averaged @) in order to ensure agreement in their
control demands. The deviation oy in the conditional error function (Equation 3.1) is
reduced through the averaging of redundant outputs, owing to the essentially uncorrelated
error contributions of each structure's elements. The controller outputs are also differenced
in order to check for consistency in their operation. This provides a sufficient statistic or
residual (r) for fault detection (Equation 3.2). The common bias or mean value Ji; of the
error function is removed (i.e. reduced to zero) upon differencing and the deviation oy is
increased. Status information is shared at the computer and, if one structure is found faulty,
then system reconfiguration consists of ignoring the failed controller's input in determining
the output control signal. Of course, this causes a subsequent increase in the system error

(using Equation 2.1) and unreliability.
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‘ €(x | Both Structures Reliable) = Gaussian (L, =}, 0, = \/ %Z efm dom + %2 ezsystemaﬁc = :’% )

Conditional Error function of Average (Equation 3.1)

r(x | Both Structures Reliable) = Gaussian (i, =0, 6, = \/ 22 & o+ 22 & =0/2)

ystematic

Conditional Error function of Residual or Difference (Equation 3.2)

3.1.1. Error Analysis of Redundant Structures

The combined sensor-to-actuator error budget tabulated in Figure 2.4 defines the
standard deviation © of the conditioned error function for the control structure under normal
operating conditions. This error variance can be further reduced through the averaging of
multiple identical structures, as defined in equation 3.4, owing to the essentially
uncorrelated error contributions of each structure's elements. [Raemer] Evaluation of this
equation for N structures discloses a 30% reduction in combined error for two parallel
i controllers and a requirement for six controllers to duplicate this amount of improvement
‘ for 60% reduction in error. This result identifies an optimization of error reduction and

redundant hardware for two structures averaged! Under normal conditions, Equation 2.1
is used to determine the standard deviation for a single structure's Gaussian error function

and Equation 3.4 is subsequently used for redundant structures.

0,+0,+..+0
Average(o) = 1 2N N - %

1

O.
i

N
=1

N
—=— * Average(o) = N’3/2 * Z o, for N parallel structures

0.parallel =
i=1
O, odundant = R aN*g = —J% for N identical parallel structures
. (Equation 3.3, 3.4)




Under faulty conditions, the error deviation is drastically increased. A uniform
fault distribution is assumed for the control structure where the fault magnitude is allowed
to achieve any magnitude up to fullscale (FS) value for the control parameter with equal

probability. A uniform probability density of base width o = 2FS has a standard deviation

of 0.577 FS by Equation 3.5: [Peebles]

o 2 FS . . . .
6, = —— = 222 for failed structure with uniform fault density
Fm i

(Equation 3.5)
This error variance can also be further reduced through the averaging of multiple identical
structures, as defined in equation 3.3, owing to the essentially uncorrelated error

contributions of each structure's elements.

(4]
F 2 FS . . )
O, = — = == for N failed, identical, parallel structures
NE N 12N

(Equation 3.6)
Finally, redundant structures have possible system states which consist of n failed
structures and m working structures (n+m < N). Equation 3.7 is utilized to determine the

resultant error deviation for this system state of the redundant structure.

o - 40 2FS

F - n+m OF - n+m o for n failed and m working structures

(Equation 3.7)

The Central Limit Theorem dictates that the probability density function of the sum of a
large number of random variables approaches a Gaussian distribution. In particular,
Peebles found that the summation of independent uniformly distributed random variables
can be closely approximated by a Gaussian density with equivalent mean and variance;
even for the case of only two variables summed. Hence, the conditional error distribution
for a redundant control structure with two or more failures (n 2 2) is represented by a
Gaussian density with zero mean and standard deviation of opr. Otherwise, the
conditional error distribution for a redundant structure with one failure (n = 1) is uniform

with a base width of any = o/N = 2FS/N.
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3.2. Reliability

Reliability (R) is frequently considered to be the capacity of a module or system to
preserve its operating characteristics within given limits and under specific conditions of
stress to achieve the mission of interest. It represents the a priori cumulative distribution
for the probability f(t) of system failure time tf (i.e. when the system passes beyond its
given limits) from the given time t to infinity. The most useful way to express the
(un)reliability and its associated pdf is in terms of the system failure rate (L) or its inverse,
mean time between failures (MTBF). The MTBEF is the expected time during which the
system will perform properly between or until failures. Component failure rate (A;) can be
estimated from observations over numerous testing cycles and is usually provided by the

manufacturer in terms of MTBF (Equations 3.8, 3.9).

. _ 1
Component Failure Rate (li) = VIBE
. . _ # failures observed ~
Estimated Component Failure Rate (ﬁi) = Funits tested X hours tested = Xi

(Equations 3.8, 3.9)
The probability of system failure for a given time (density function f(t), Equation 3.10) or
over a given time period (Unreliability distribution Q(t), Equation 3.12) can then be

evaluated. [Walker]

The behavior of A over time is typically represented by the "bathtub” curve (Figure
3.5). During the early failure period, weak parts that are marginally functional are
eliminated within the first few hours of operational burn-in. The middle section of the
curve, or the useful life period, contains the smallest and most nearly constant failure rate.
Here, the reliability of a component or system which is subject to failure due to a large
number of independent causes is characterized by an exponential pdf (Figure 3.6, Equation

3.11) much in the same way that the normal is a limiting distribution for the error (as
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dictated by the Central Limit Theorem, Chapter 1) [Drenick]. This dualism is further
exhibited in that both the error and reliability distributions are maximized with respect to
entropy (see Section 3.5.1). In the final section of the bathtub curve, device strength
deterioration causes wearout failures to overcome these chance failures during the last span

of system life. Thus, the complete history of system reliability is defined by the history of

the failure rate. The useful life span of the system is the focus of our discussion.

[Bazovsky]
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Component Failure pdf £(t) = p(t=t) = A, exp(-A1) (Equation 3.10)

Component Reliability R(t) = p(t < tf) = |f(r) ot

o
t

cxp(-?»it) (Equation 3.11)

t
Component Unreliability Q.(t) = p(t 2 tf) =] f.(t) ot
0

1 -exp(-At) (Equation 3.12)

The characteristic property of the exponential distribution which is associated with
the useful life period of a system is its constant failure rate or lack of memory property. A
component does not "remember" how long it has been in operation (i.e. how many times it
has been used). Thus, the probability it will fail in the next hour of operation (Equation
3.12) is the same if it were new (i.e. unused), regardless of its accumulated power-on
hours. Failure becomes merely a chance occurrence. An additional characteristic of the
exponential distribution is the closure property of failure rates for serial systems. The
failure rate of a serial system, where M components operate independently and the system
fails when the first component fails, is the sum of all M component failure rates (A;). The
control structure can be considered a serial system of independent components (Figure
2.1), each with their own respective component failure rates. An example tabulation of
component failure rates and their summation for structure failure rate (Aotal) is presented in
Figure 3.7. By the independence assumption, the reliability probability of a serial system
is the intersection or product of all component reliabilities (i.e. all components must be
working for the system to work) (Equation 3.13). Thus, the exponential distribution
allows the closure property on failure rates for serial systems. Structure unreliability for
each controller in the DDRS is the complement of the structure reliability (Equation 3.14).

[Bazovsky]
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Structure Reliability Rg= Ry MR, M+ Ry

= exp(- llt) * exp(— A-2t) koo exp(— )‘Mt)

!

exp(—(k1+12+ lM) *t)

where M = number of components within the structure

M M
Y .
Structure Reliability Ry® = | [R® = [ [¢ = ¢ " where = z A,

i=1 i=1
(Equation 3.13)
-At

. oy — - —3 - S
Structure Unreliability Qu(t) = 1-Rg(®) = 1-e (Equation 3.14)

Component Failure Rate (per hour) Comments

Sensor 106 Thermocouple

Interface 106 Cold-junction Compensation
Filter 105 1-pole RC

Amplifier 10-5 OP-07

Multiplexer 105 CMOS

A/D Convertor 10-4 12-bit conversion

Computer 10-5 IBM AT

Structure Failure Rate (Ag) 0.000142 Summation of component rates
Structure MTBF 7042 hours Inverse of failure rate

Figure 3.7 An Example Structure Failure Rate Budget
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The need for higher levels of reliability increases with the economic, hazardous, or

other consequences of equipment failure and downtime. Common methods of reliability
enhancement or fault avoidance include: operating at low stress (derating), design
simplification to increase component reliability, specification of premium components (as
opposed to industrial grade parts passed within +30 of spec), and redundancy. In
applications where low front end failure rates have higher priority over component cost
(e.g. the computer systems on the space shuttle), redundancy of key parts of the system is
a commonly used option. The parallel redundancy of the DDRS allows system reliability
greater than that of a single control structure, Due to the independent operation of the
parallel structures, the System unreliability of a parallel system (Equation 3.15) is the
intersection or product of all structure unreliabilities (all structures must fail for the system
to fail). Since each probability is between zero and one, system unreliability will be less
than either structure's unreliability. As with the serial and parallel error equations, semi-
redundant structures must make use of both equations 3.14 and 3.15 in determining system

unreliability.

ey ege al 'xs[ N
Parallel Redundant Structure Unreliability Q) = HQs(t) = (1-¢ %)

i=1

(Equation 3.15)

Farallel Redundant Structure Reliability Ry() = 1- Q(t) = 1- (1 - ¢ %)

(Equation 3.16)
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3.2.1. Reliability Analysis of Redundant Structures

The relative improvement in reliability which can be achieved by employing active
redundancy is illustrated in Figure 3.8 by Walker. In this figure, the unreliability of a
single structure is compared to the unreliabilities of a dual and triple redundant
configuration of identical control structures. The unreliability q of each configuration is
plotted as a function of a ratio of the period of operation t and the structure's mean time
between failures T (1/A5). It can be seen that the maximum benefit of redundancy is
achieved during early operating periods with respect to the structure's MTBF. In the limit
as the ratio t/T goes to zero, the slopes of the curves approach N decades per decade
(where N = number of structures in the configuration). Thus, each structure in a redundant
configuration provides an order of magnitude improvement in the reliability of the
configuration during short term missions or earlier periods of extended operation.
However, as the ratio t/t approaches unity, the reliabilities of all configurations approach
zero and the benefits of redundant structures, although present, become less dramatic. This
reflects the fact that the probability that even one of the identical structures will still be
operating at MTBF 7 is small no matter what level of redundancy was employed. From
this analysis, one can see the tremendous benefits in reliability possible with large
configurations of active structures or with hybrid redundancy (any combination of active
and standby redundancy). A hybrid redundancy scheme, consisting of a number of active
control structures (e.g. DDRS) employed for efficient fault tolerance and a number of
standby control structures which can be switched into the active configuration upon the
occurrence of a fault or before the MTBEF is reached, can achieve any specified reliability
goal with less reliable components than simply an active redundam scheme. Of course, the
additional hardware requires more expense and working volume than can usually be
afforded. In fact, space limitations and expense are two major reasons why redundant

structure configurations are avoided and research has shifted to analytical redundancy.

[Walker]
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3.2.2. Effect of System Inspection on Reliability

As discussed above, system reliability is represented by an exponential function
during its useful life period (Figure 3.6) with an estimated mean time before failure (MTBF
= 1/A). The exponential distribution is characterized by a lack of memory property; its
form is consisten:over numerous missions during its useful life span, irregardless of the
number or length of the missions. However, this property assumes that the system is
inspected for faults between missions and found to be operational. The following analysis
proves the lack of memory property of the exponential distribution for failure time
(Equation 3.10). Here, the system is inspected at time tj and found to be operating
normally. Thus, the time of failure tf for the system must be greater than the time of
inspection (tf > tf). The conditional probability of system failure time given normal
operation at the time of inspection is determined in Equation 3.17. [Peebles] The result is
that the inspection time becomes the new start time or zero reference for the exponential
distribution associated with reliability and failure time. The distribution maintains its form

and is simply shifted in time to the right.

" Failure time f(t!t> t) = %Ql(t-)-T((ztI()tl) = Aexp(-A [t- yD) for t2t  (Equation 3.17)
R
100%;
exp (A1)
e \
IR t

Figure 3.9 Reliability Exponential PDF after System Inspection
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3.3. Conclusions

The control structures presented in this thesis are designed for the benefits of
redundancy. The deviation in the error distribution of the control signal is reduced through
the averaging of the redundant outputs, owing to the essentially uncorrelated error
contributions of each structure's elements. This reduction in error variance is optimal with
respect to redundant hardware for two structures. The controller outputs are also combined
in order to provide a sufficient statistic or residual for fault detection and isolation (FDI).
Each structure in a redundant configuration provides an order of magnitude improvement in
the reliability of the configuration during short term missions or earlier periods of extended
operation. However, redundancy also causes an increase in system entropy with respect to

reliability and accuracy.

The results of previous sections on reliability have assumed perfect coverage of all
possible faults or deviations from normal operation for the control system. Coverage is the
property of a system which defines its ability to tolerate failures of a specified subset or
percentage of its components (i.e. the degree of its fault tolerance). The mid-value
selection algorithm of the TMR concept allows coverage of only the first failure and the
NMR concept allows coverage of the first (N-1)/2 failures where N is any integer.
However, the improvement in structure reliability with each level of redundancy assumes
that: 1) a fault to any single controller has no effect on the normal operation of the total
control system, and 2) the total control system fails only upon the failure of all controllers.
This is only possible with perfect fault detection and isolation (FDI) and subsequent
reconfiguration of the control system to maintain normal operations without loss in
performance (i.e. complete fault coverage). In the following chapters, we shall investigate
the fault coverage and reduced system entropy achieved by FDI schemes for dual and triple

redundant control structures.
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Chapter 4:  Fault Detection and Isolation (FDI)

In contrast with current fault-tolerant control schemes, the dual-difference
redundant structure (DDRS) and triple redundant structure (TRS) provide real-time failure
detection and error accountability for sensor systems in an untended manufacturing
environment without the use of a process model. Instead of modelling the process, an
analysis of the control structure provides a minimized Gaussian error distribution (Chapter
2) and a maximized exponential reliability distribution (Chapter 3). These models provide a
complete concept of all a priori knowledge of the control structure. Entropy provides a
measure of this a priori knowledge or, more appropriately, lack of knowledge (i.e.

ignorance/uncertainty) in terms of the a priori probability distributions (Chapter 5).

Thus, the DDRS and TRS are one step beyond passive redundancy schemes (e.g.
TMR or NMR) towards complete fault coverage in that fault occurrences are detected and
not merely screened. Also, these control structures provide fault-tolerant control (i.e. fault
detection, isolation, and reconfiguration) to the extent of their capabilities. The dual-
difference redundant structure provides quick and efficient front-end fault detection with a
simple difference test, yet fault isolation is only possible to the extent which the simplex
fault detection schemes provide fault coverage. “The triple redundant structure, however,
provides both efficient fault detection and isolation with a more complex FDI scheme.
Upon fault detection, the TRS is reconfigured to the DDRS with the two remaining valid

controllers. In this manner, fault-tolerant control is achieved.
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Many current FDI techniques rely on a systems approach to dictate the proper
operating conditions for a controller. The emphasis of a systems approach is upon
understanding the process (not the control structure) so that its progress can be controlled
and faults contained. There are several problems with this approach:

1. Fault detection for the control structure is achieved in a secondary fashion. Generally,
these efforts involve using a process model (numeric or symbolic) to estimate the process
outputs (y) for given inputs (u), and these are compared with the input sensor readings of
the controller. Any major discrepancy indicates the occurrence of a fault. Attention must
be focussed upon the control structure, not swept along with process modelling, for its
proper fault monitoring.

2. These models usually cannot represent the process completely and there is some
considerable error associated with their estimates. It is the assumption of this paper that
our expert model of the control structure allows greater confidence than any results
achieved with a process model due to a smaller variance.

3. There is no generic model which represents every process effectively. It is the goal of
this paper to model a generic control structure (in broad terms, admittedly) such that it may
be applied to any controller equally and effectively.

4. The ancient argument of empirical vs. theoretical belief. In this instance, it seems
intuitively better to know with certainty what the process is doing rather than what it should
be doing.

This is not to imply that the extensive work being done with analytical redundancy
is not meaningful. On the contrary, we shall find that more efficient fault detection and
isolation is possible with additional sources of information or voters. Of course, with this
additional knowledge comes greater complexity. With analytical redundancy, confidence
may shift to the system level in order to diagnose each controller's performance. Hence,
local observation and process modelling can complement each other in order to ensure
continuous and efficient system knowledge. Alternatively, an analytical model of the
process can be used as a failsafe in the case of complete hardware failure. In this chapter,

we shall confine our attention to the analysis of FDI schemes based upon physical

hardware redundancy.
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4.1. Off-line Maintenance

Important to the reliable performance of systems over long periods of operation is
the use of scheduled maintenance. By use of partial disassembly, visual inspection, and a
number of specialized inspection/testing procedures and equipments, deterioration of
components can be discovered and the components replaced before they fail to perform in
an adequate manner. Some stress testing may be included in maintenance procedures to
identify components which are weak in some respect and are more likely to suffer an early
failure. Itis clear that frequent and careful scheduled maintenance is highly beneficial and
yet is also costly both in terms of the personnel and facilities required to perform the
maintenance and in terms of the additional systems required to continue service while
others are out for maintenance. In addition, periodic testing cannot detect any transient
faults or spurious noise sources unless they occur during the test. Therefore, some form of
on-line or insitu FDI schemes are required. It is assumed that inspection of the redundant

controllers is performed prior to any mission (see Section 3.2.2).

4.2. Simplex Fault Detection and Isolation

Self-tests of single or simplex structures can be implemented by adding additional
hardware to the control structure or by incorporating reasonability tests in the computer
software which monitors the structure’s status. These self-tests are usually designed to
detect those failure modes or their respective signatures which have been identified by
conducting a failure modes and effects analysis of the control structure design. Although a
self-test may quickly and efﬁciéntly detect the failure mode for which it has been designed,
the inability to predict a priori all of the failure modes of the control structure tends to limit

the coverage which the self-test provides.
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Built-in Test Equipment (BITE) refers to special monitoring hardware or other
means of directly indicating the operating condition of the control structure or one of its
components or subsystems. For example, Analog Devices 4B Alarm Limit Subsystem is
an off-the-shelf BITE which provides adjustable alarm limit modules with independent HI
and LO relay outputs in order to monitor up to twelve control signals. A watchdog monitor
(WDM) can be implemented in hardware or software which requires a specific action or
sequence of actions to occur continually within a specified time period. Some sensor
inputs that have two-winding inputs (e.g. resolvers, LVDTs, RVDTs) have known
arithmetic relationships between the two inputs and can therefore be checked in this
manner. Output integrity can be accomplished by wrapping the output signals, often in the
form of a current, back to the control system for verification. However, the very nature of
continuous test equipment contradicts itself in that the BITE itself is subject to faults as

well.

Reasonability tests are the first line of testing done by the control structure to ensure
the validity of the control structure. Limit testing of the controller variable and its rate will
detect for extreme bias and noise conditions, respectfully, which comprise the majority of
spontaneous faults. For example, if power to the signal acquisition and conditioning
subsystems goes down or the signal line is cut or opened, then the input computer readings
will take a giant step to some incoherent value (typically zero). In addition, the physical
characteristics of the hardware (e.g. thermocouple) or the parameter may dictate an absolute
minimum and/or maximum for the control signal. Thus, the ran ge check may also guard
against shorts to other voltage sources or across the control structures if the sudden bias is
large enough to exceed the range. The rate check compares the discrete rate of change from
sample to sample versus the maximum for that parameter. Thus, the rate check may be able

to detect a short to a noisy source or the occurrence of a transient spike disturbance.
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Additional reasonability tests can be constructed to account for other directly observable

fault characteristics of the simplex control structure.

The implementation of a self-test introduces the risk of making two types of
decision errors in assessing the performance of the control structures (Figure 4.1). One
might erroneously decide that an unfailed structure has failed and this decision error is
referred to as a false alarm (FA) or a Type I error. Alternatively, one might erroneously
decide that a failed structure has not failed and this decision error is referred to as a missed
detection (MD) or a Type Il error. Either decision error can arise from failures of the BITE
hardware. Missed detection is a common decision error for reasonability tests when the
magnitude of the fault is not large enough to exceed the specified intervals. These decision
errors can have a significant impact on the reliability and performance of the control

structure.

HYPOTHESIS
H, H;
7
E %
Normal
E() .
Vv Operation
. | 7
N // Fault
E,
T Detected
7

Figure 4.1 Two Possible Types of Decision Errors for a Binary Event Set
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4.3. Duplex Fault Detection and Isolation

The dual-difference redundant structure (DDRS) is the logical implementation of
our efforts to model the controller error sources (Chapter 2). By placing identical control
structures side-by-side, we can validate their dual performance by comparison of the two
structures. For a given common input at the sensors, what is the deviation between the
identical structures? Notice that no knowledge of the input is needed, save that it is the
same for both structures. The difference test will usually provide better coverage for
structure faults than is provided by simplex testing because its effectiveness is not limited
by an inability to predict a priori all of the possible failure modes. Its effectiveness is
strictly limited by the uncertainties in the measurements (i.e. the error) and in the control
structures (i.e. reliability). Ideally, controller deviation would be zero for all time. From

our expert model of structure error, we know that this is not the case.

Structure error is represented by a stationary Gaussian pdf with minimal mean and
variance (Equation 2.1). A 2-dimensional error vector € (Figure 4.2) can be defined which
takes a random walk within the space defined by the error of controller 1 (€1) and the error
of controller 2 (€3). This space can be delimited by a box or window of width T. This
threshold T can be optimally determined from a cost analysis of all possible event and
hypothesis pairings for the dual structure (Bayes Criterion, Section 4.3.2). Alternatively,
this "Window of Valid Performance"” can be defined such that it confines the dual structure
error vector for most samples during normal operating conditions (Neyman-Pearson
Criterion, Section 4.3.3). For example, a threshold set at the three sigma limit confines a
Gaussian variable for 99.7% of all samples under normal conditions. In either case,
traversal of the error vector beyond this boundary implies the occurrence of a single or dual
structure fault (where f1, f = magnitude of a fault in structure 1 and 2, respectively). A
single structure fault involves the addition of a 1-dimensional error vector (horizontal or

vertical), while a dual fault is 2-dimensional.

55




One problem, however, with any given setting of the window's size is that there is
always the probability that this traversal is merely a valid magnitude of the modelled error
vector. The probability of false alarm (Pra) is this conditional probability of improper fault
detection given that no such fault has occurred. The Neyman-Pearson criterion for
determining the threshold T is based on maintaining a specific bound on Pra. This draws
our attention to the second problem in determining the decision threshold; the possibility of
a missed detection (PMp), where the window may be set too big relative to the fault
vector's magnitude. Thus, there exists an inherent give-and-take for this scenario between

false alarms and missed detections.

€,+f, .
3
€ Zl‘ Dual Structure Fault
/ >
Single Structure Fault
€
< P ------=---=--
Window of Valid Performance
<4 T >
v

Figure 4.2 Dual Structure Error Space
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The key to the DDRS is the parallel, redundant nature of the control path which
allows increased confidence in the dual controllers due to their continual status cross-
checking. Thus, any error sources common to both parallel paths in the DDRS such as
process disturbances, load changes, improper sensor or actuator location, nonredundant
modules in the control path, etc. cannot be considered in our DDRS fault analysis.
Deviations of the measured parameter from expected values due to these error sources will
be transparent to the difference test and must be detected with process knowledge by the
host computer (the next level of diagnostics). Full redundancy, therefore, is preferred over
partial or modular redundancy. Parallel operation is not always feasible, though, for all
modules in the control path, such as: averaging two actuators to drive the process, space

limitations in locating the two sensors, the expense of two redundant computers, etc.

4.3.1. Dual-Difference Validation Test

The combination of dual redundant control structures and an expert model of the
structure error allows for a quick, efficient method of validating dual controller
performance. Limit testing of the controller variables and their rates will detect for extreme
bias and noise conditions, respectfully, which normally comprise the most costly of
spontaneous dual and single channel faults. This definition of full scale magnitude (FS)
corresponds to an additional, outermost square (Figure 4.3) in the dual structure error
space which confines the error vector for all time. In addition to limit testing, a direct
comparison (or difference test) of two controller variables (e.g. outputs uj and up) can
validate DDRS operation with respect to the a priori error p(€) and reliability Rs(t)
distributions for the structures and a worst-case fault magnitude fiyin based on the current
application. This comparison can be performed at any point in the parallel path of identical

structures, but can only validate the DDRS up to and not beyond that point. The residual r
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is considered a sufficient statistic for this comparison because it removes the controller
variable (u) and error mean (ji¢), which are common to both signals, from the test. The
dual-difference validation test is represented in Figure 4.3 by the area confined between
two parallel lincs4 (given in slope-intercept form: € = €1+T and € = € -T):

Difference Test for Validation of the Dual-Difference Control Structure
under normal operating conditions (i.. f; = f, = 0)

lu -u2l = Iu+£1+fl-u-£2-f2I = |£1-£2| <T

1

Hence, el+T 2 €, 2 el-T

The Window of Valid Performance, however, is still a subspace of the space confined by
the difference test. Figure 4.4 depicts the convergence of different validation schemes and
their associated test spaces towards the desired limits set by our expert model. The Dual-
Difference test space is shown to be smaller than that achieved through traditional majority-

voting schemes because minimal error variance is assumed for the expert model.

The drawback of the difference test is that our detection scheme is also insensitive
to a common bias fault: a dual fault where a fault of equal amplitude occurs on both
controllers. The difference test attempts to define acceptable behavior of the error vector in
the dual structure error space with the one-dimensional pdf of the residual r (Equation 3.2).
The long strip cutting diagonally across the length of the error space represents the possible
missed detection of a common bias fault. If a uniform, equivalent fault distribution is
assumed for both controllers (the faults have an equal chance of achieving any magnitude
up to full scale and, therefore, a fault vector has an equal chance of reaching any point in
the error space), then the probability of the occurrence of a common bias fault can be based
on the ratio of the area of this strip (ApT) to the area confined by limit testing (4 FS2). For

small threshold T, this ratio is approximated by T/FS.
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4.3.2. Detection Scheme Optimization with Bayes Criterion

Our fault detection scheme is analyzed as a classical, M-ary hypothesis test (M=3)
with a fixed, singular data sample. [Van Trees] With each sample, it is assumed that a
decision from M possible decisions must be made as to which event of M possible events
has occurred. Thus, there are M possible alternatives or event-hypothesis pairings each
time a decision must be made. The three events Eg, E1, and E3 in our fault detection
scheme are that no fault, a single fault, or a common bias fault has occurred, respectively.
Our decision will be facilitated by a unique physical manifestation associated with each
event (i.e. the magnitude with which each event affects the measurable residual r). Dual
faults other than common bias faults are assumed to be indistinguishable from single
structure faults with respect to the difference test and are, therefore, included in event Ej.
This fact has important ramifications in our attempt to isolate a fault to the structure in
which the fault occurred. Event Ej is represented as an additive error of magnitude f = f; -
f, (Figure 4.2) which causes a bias shift in the pdf of the residual r. This analysis is
concerned with the worst-case magnitude of f (fmjn) Which is the smallest fault (and, thus,
the hardest to detect) of accountable cost for the current application. A major concern is
that event E7 (a common bias fault) has no effect on the residual r and cannot be

distinguished from normal operating conditions.

2
P, = pE,) = Ri1); P, = Qi) = "T QSa)(iT—FS——T—) P, = 1-P;-P,
Fs® 4 Fs?
Equations 4.1 - 4.3

PGIEy) = PGE,) = pr) = exp(- L P )

cf_

r-f
exp( ( mm )
r Equation 4.5

Equation 4.4

PUIE) = pr-£,,) =
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Our fault detection scheme is optimized by using a generalized likelihood ratio test
(GLRT) which is based on a degenerated Bayes criterion. [Van Trees] The Bayes criterion
assumes the a priori determination of the event probabilities Po, P1, and P (presented
above); the conditional probabilities Pgg, Po1, Po2, P10, P11, and Py for each decision
given the occurrence of each event (presented below); and the costs Coo, Co1, Co2, C10,
Ci1, and Cy2 associated with each possible event-hypothesis pairing. For this exercise, the
Bayes criterion is degenerated such that only two hypotheses are of importance (Hop = valid
performance, Hj = fault detected) and only six alternate pairings are possible.

L) = (L)

Oy

P,, = PHE) = Py, = pHE) = Jp(r)dr = erf(
-T

P, =P,=P,= jp(r)dr+_"p(r)dr = 1-P,
- 6o T

T-f . -T-f .
1 min 1 min
P = Ip(r-f.)dr=—erf( ) - Lepf(——min )
g e 2 o2 2 62
-T oo
= [pe-fydrs [pe-f)d = 1-Ry,
- T
Equations 4.6 - 4.9
u+T u+T T/GJ—
where jGaussian(u,c) ox = —2 j & '”) ) X = = I exp(-y?) dy = erf(L)
LT Yome? o o2

An average cost function or risk (R) is determined for our fault detection scheme:

1.2
= 2 2R

i=0j=0

= P,Cp + P,C;; + P,Cy + PPy (Cy - Cpp) + PyPo,(Cpy - Cpp) - PPo(Cyg -

Equation 4.10
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The first three terms represent the fixed cost of our decision and the remaining

terms may be minimized with the following relation or likelihood ratio test (LRT):

say H,
>
P 1P 01(C01 h Cu) + P 2P02(C02 - C12) < P OPOO(CIO - Coo)
say H,
say H
f_gl Z ! Py(Cio - Cop) - Py(Coy - C) = n
POO say HO Pl(C01 - Cll)

Equation 4.11

The quantity on the left in the above decision rule is called the likelihood ratio,

denoted by A(r), and is determined directly from the conditional pdfs defined above:

AG) = Poy _ PE-fo) _ exp( X fin frznin)
Poo p(r) (72 263

T

Equation 4.12
The likelihood ratio test for our detection scheme compares the absolute value of the
residual to the threshold T and is thus generalized in order to account for a fault in either
controller (i.e. any faultf = | £} - {3 2 foin). The threshold T can be directly determined
from the above decision rule using the derived form for the likelihood ratio A(r). The final
form for the difference test results upon slight rearrangement of the decision rule:
say> H

min

2

T = f‘. logm +

Irl <
say HO min

Equation 4.13

A special cost assignment that is frequently encountered in practice (e.g. the cost
values cannot be determined directly) is one where correct decisions incur no penalty (Coo
= Cj1 = Cj2 = 0) and incorrect decisions incur the same penalty (C190 = Co1 = Cp2 =
1). With this cost assignment, risk is equivalent to the probability of decision error and a
simpler definition for 1) is achieved:

R=P

P,-P, P,

PP, + PPy + PPy, and M = P I)—l—

Emror . “ 0" 10 2702
Equations 4.14 and 4.15

|t
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Figures 4.5 - 4.13 provide a perspective on the efficiency of the dual-difference
detection scheme based on the Bayes criterion with this special cost assignment. The
example error function (¢ = 0.3276%FS, Figure 2.4) and the example reliability
distribution (MTBF = 293 days, Figure 3.7) for a typical control structure are used. The
conditional probability density function of the residual or test function r under both of the
primary hypotheses Eg and E; is exemplified in Figure 4.5. This figure provides a
perspective on the nature of the two types of decision error and the extent of their
probabilities Pra and PMp. Note the dramatic dependence upon the threshold T.
Figures 4.6 - 4.11 represent all variables of interest within the dual-difference detection
scheme for a fault amplitude fiin = 50 = 2.3165%FS. Note that the probability of a
dual fault p(E2), false alarm Pga, missed detection Pyp, and decision error Pgrror are very
small; while the probability of fault detection Pp is almost completely certain, regardless of
when a fault should occur. The threshold T is originally made quite large while the
probability of normal operation is high and subsequently is pulled closer towards the origin
as the probability of a structure fault increases. Thus, the threshold is varied according to
the prior event probabilitiesr of the control structure. Figures 4.12 and 4.13 depict the effect
upon the threshold T and the resulting probability of decision error for the fault detection
scheme as the ratio of the fault signal fii, to the noise deviation oy is increased from one-
half to five. Worst-case corresponds to a fault magnitude and ratio of zero (i.e. where a
fault cannot be distinguished with the residual) and the probability of error is 50% at all
times due to the blind guess of either event Eg or E1. There is a definite reduction in this
probability of decision error with increasing fault signal-to-noise ratio (SNR). Therefore,
this analysis is limited to the smallest fault magnitude fpin of importance or cost.
In addition, this relationship highlights the importance of minimization of the residual noise
(o; = ov2) and therefore the error deviation (o), as detailed in the error budget techniques

of Chapter 2, in order to maximize the SNR ratio.
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Figure 4.5 Decision Errors for a Binary Hypothesis Set
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4.3.3. Detection Scheme Optimization with Neyman-Pearson Criterion

Clearly, the objective of any binary hypothesis testing decision algorithm is to
achieve very low error probabilities or, equivalently, to simultaneously attain high fault
detection Pp and low amount of false alarms Prs. Unfortunately, these goals are in direct
conflict with each other in all problems of interest. This problem was not evident within
the example of Figures 4.5 - 4.11 due to the large SNR but, in cases dealing with smaller
SNR, this problem shall become evident. An explicit means of summarizing the tradeoff
between fault detection and false alarms is provided by the receiver operating characteristics
(ROC) plot. The ROC plot is merely a graph of Pp vs. Pra and Figure 4.14 represents the
Gaussian case analyzed previously. The points Pro = Pp = 1 and Ppp = Pp =0 are
always on the ROC plot because they correspond to the respective strategies of always
deciding that a fault has occurred (event E1) or that the control structure is operative (event
Eg). The ROC for any possible test always lies above the dotted line which represents the
worst-case scenario of equal priors (p(Eg) = p(E1)) and a strategy of pure guessing without
regard to the observations (i.e. the residual). The monotonicity of the ROC plot reflects the
fact that fault detection cannot be increased without a subsequent increase in false alarms
for a given fault SNR. An obvious criterion is to constrain one of these conditional
probabilities while maximizing (or minimizing) the other. As opposed to the Bayes
criterion, the Neyman-Pearson criterion recognizes this basic asymmetry in the importance

of these two hypotheses. [Poor, Van Trees]
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The classical Neyman-Pearson criterion of radar detection theory constrains the
conditional probability of false alarms Pra to remain less than some arbitrarily small value
o, known as the level or significance level of the test, and then maximizes the conditional
probability of fault detection Pp to some value (1-B), known as the power of the test. This
generally assumes that 7, known as the threshold of the test, is greater than unity. For
example, the cost of false alarms Cjo could greatly exceed the cost of missed detections
Cp; or the a priori probability of a fault Py = p(Ep) might be substantially smaller than that
of normal operation P; = p(E1). Since the probability of fault detection monotonically
increases with the probability of false alarms (Figure 4.14), maximization of Pp

corresponds with a Pga set at its upper bound of .

-T )
T T
P, =P, =-_.[P(r)dr +il'P(r)dI = 1'61‘f(:;5) = 1—erf(—2—6) e

T= 20 erf'l(l - o) where erf'l(x) is the inverse function of erf(x)
P =P =1-Lerf(erf'(1-a) --f"ﬂ) - Ler(-erf’(1- o) - fany _ 1o
D 11 2 20 2 20

Equations 4.16 - 4.18

The threshold T is held constant by the Neyman-Pearson criterion and it is completely
defined by Equation 4.17 upon choosing the level of the test (o). Likewise, the power of
the test is held constant and is defined by Equatfon 4.18, known as the power function of
the test. The power of the test (fault detection) is a monotonic function of the level of the
test (false alarms) and a change in one implies our willingness to accept a similar change in
the other. Note that decision costs are not evaluated and the prior event probabilities are not
incorporated within the Neyman-Pearson criterion and, thus, this information is forfeited

for a simpler approach to the fault detection scheme.
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Figures 4.15 - 4.17 provide a perspective on the efficiency of the dual-difference
detection scheme based on the Neyman-Pearson criterion. The example error function
(c = 0.3276%FS, Figure 2.4) and the example reliability distribution (MTBF = 293 days,
Figure 3.7) for a typical control structure are used. Figures 4.15 - 4.16 represent all
variables of interest within the dual-difference detection scheme for a fault amplitude fmin
= 50; = 2.3165%FS with the threshold set at a constant three sigma interval (T = 30p).
Therefore, the level of the test (probability of false alarms, Pra) is 0.27% and the power
of the test (probability of fault detection, Pp) is 97.72%. Note that the probability of
decision error Prror is very small, while the probability of fault detection Pp is very certain
regardless of when a fault should occur. In comparison with the performance of the fault
detection scheme based on the Bayes criterion at a SNR of five, the Neyman-Pearson
criterion allows for a similar level of decision error with a reduction in the design
complexity. However, an increase is found to occur in the probability of missed detection
of a dual fault (event Eo). Figure 4.17 depicts the resulting probability of decision error
for the fault detection scheme as the ratio of the fault signal fij, to the noise deviation oy is
increased from one-half to five. Analysis of Figure 4.17 indicates that a large fault signal-
to-noise ratio is required to even warrant using the Neyman-Pearson criterion for the fault
detection scheme. For small SNR ratios, the 3¢ setting for the threshold hides the fault
distribution from the test (corresponding to always deciding event Eg) and the probability
of error approaches 100% as the reliability approaches zero at long mission times. Worst-
case for the Bayes criterion corresponds to an SNR of zero (i.e. where a fault cannot be
distinguished with the residual) and the probability of error is 50% at all times due to the
blind guess of either event Eg or E;. Note that all curves in Figure 4.17 exhibit the
exponential rise associated with the unreliability because the threshold is not adjusted (as it
is with the Bayes criterion) to account for changes in the prior distributions. Also, there is
a definite reduction in this probability of decision error with increasing fault signal-to-noise

ratio (SNR).
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4.3.4. Duplex Fault Isolation and Reconfiguration

Upon fault detection within the control structure, diagnostic schemes must be
initiated to isolate the failed structure(s), locate and report the faulty module(s), and
reconfigure the system in order to provide continuous valid control for the length of the
mission (Note: system shutdown is not considered possible in this exercise!). The dual
nature of the DDRS afforded quick and efficient validation of the controllers with the
difference test. However, no new information may be gained by further comparison of the
two structures once a fault has been detected. Hence, subsequent decisions must be based
on further analysis of the individual controllers (simplex FDI, Section 4.2). Otherwise,
either controller may be decided as valid with a 50% chance of correct isolation (flip a coin)
given that a single fault has occurred and with complete error upon occurrence of a dual
fault. In this case, note that the probability of misisolation by blind guess given that a fault
has been detected (Equation 4.19) goes to unity as time goes to infinity. Reconfiguration
consists of removing the faulty controller from the output estimation scheme (i.e.
averaging) yet still including it as a voter in the FDI scheme. The faulty controller is simply
returned to valid status upon a successful difference test. This reconfiguration scheme
allows recovery from false alarms and transient faults and maintains the independence
between successive difference tests of the DDRS over the mission. Alternatively,
reconfiguration may consist of ignoring the faulty controller's output in all future
operations (Section 4.5) with the final possible state of the system being shutdown. Figure
4.18 depicts the decision tree associated with our FDI scheme for two levels of redundancy
where correct decisions are denoted with a check mark. The probability of each possible
system state can be directly determined from the decision tree (Equations 4.20 - 4.24).
Figure 4.19 follows the total probability of decision error for the FDI scheme over the
mission time of our example control structure, accounting for both: detection errors based

on the Bayes criterion; and isolation errors by blind guess. Due to the near optimality of
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the detection scheme in this example (i.e. Pgoo = P11 = 1), PError (Equation 4.25) is

approximately the probability of misisolation by blind guess (Equation 4.19).

Pr{Misiselation | Fault Detected} = (1 - Pr{Isolation | f1,f2}) Pr{fi,f2} +
(1 - Pr{Isolation | f1}) Pr{f1} + (1 - Pr{Isolation | f3}) Pr{f3}

Pr{Misisolation by Blind Guess | Fault Detected} = 2 (0.5) Rs(t) Qs(t) + Qs2(t)
(Equation 4.19)

Probability of Each Possible System State for the DDRS

Pg; = RgPyys Pg, = 2QgR Py 5 _Qs( D‘r)Poo’LQs(1 DT)Pm;

A A
_ p2 . _ 2 DT 2 DT
P, = RGPy + Qg Ry Py 5 Py ‘Qs(Fsz)Plo"'Qs(l'Fsz)P11+QsR p

Equations 4.20 - 4.24
States

1: Dual Structure,Both Working
2: Dual Structure,One Working
3: Dual Structure,None Working
4: Single Structure,Working
5. Single Structure,Not Working

Probability of System Error for the DDRS

2 2 2
P = Py, + P + P +RoP o = Qg + QgRG P + 2QR Py + RgP,,

Error

]

QZS’ + QgRg for the optimal fault detection scheme  (Equation 4.25)
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4.4. Triplex Fault Detection and Isolation

With triple modular redundancy (TMR), structure validation is provided by
comparison of three identical control structures. TMR is actually the most common form of
traditional majority-voting schemes. Its obvious advantage over dual redundancy is the
efficient means of isolating a single structure fault . . . a direct extension of the DDRS to
allow for fault-tolerant control of the system. Additionally, unreliability and error are
reduced with each level of redundancy. Entropy, however, is increased with redundancy.
Upon fault detection and isolation, the triplex system reconfigures to the DDRS utilizing the
two valid controllers. The benefits of a triplex system are lost during a common dual or
triple fault and perhaps even become a detriment if the voting scheme follows the faulty
controllers. However, as seen before, the probability of a common fault is small. Finally,
the additional hardware requires more expense and working volume per system variable
than might be afforded. Space limitations is one of the major reasons current fault-tolerant

techniques have shifted their attention to analytical redundancy (i.e. system models).

4.4.1. Two-dimensional Parity Space

The combination of a triple redundant control structure (TRS) and probabilistic
models of the structure error and reliability allows for an efficient method of: 1) validation
of triple controller performance, 2) isolation of a single controller fault, and 3)
reconfiguration to the DDRS. Comparison tests of the controller signals detect and isolate
faults by observing disagreements in controller demands. A sufficient statistic for these
comparison tests must be defined which: 1) is a linear combination of controller signals
(e.g. input sensor measurements), and 2) removes the unknown controller variable (u) and
error mean (JL¢), common to all signals, from the test. The latter property allows the use of
a comparison threshold determined a priori that is dependent upon the signal-to-noise ratio

(SNR) of structure error deviation (6) and the smallest fault magnitude of accountable cost
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(fmin). As seen in the previous section, a simple difference between controller variables
can validate DDRS operation. However, the set of three difference equations possible for
the TRS is linearly dependent and does not facilitate a probabilistic analysis of the FDI
scheme. For an n-dimensional parameter space, only a set of (n-1) independent linear
comparison tests can be derived because each comparison test must include at least two -
parameters to remove the controller variable. Hence, a two-dimensional parity or
comparison space (Figure 4.20) composed of two parity equations (Equations 4.26, 4.27)

is suggested by Walker to facilitate fault detection and isolation for the TRS. [Walker]

Parity Vectorp:  p; = %“1 - %uz - 71_6—u3 (Equations 4.26, 4.27)
| 21
TR R

Parity Vectorp: 1 = ./ p% + p% ;0 = tan'l(g—?) (Equations 4.28, 2.29)

14d6,-142)

Figure 4.20 Two-Dimensional Parity Space for the TRS
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Equations 4.26 and 4.27 define the two orthonormal residuals which comprise the
two-dimensional parity space for the triple redundant control structure. Orthonormality
dictates that: 1) the residuals are orthogonal (i.e. perpendicular) and thus retain a zero
mean, and 2) each residual is normalized to a unit vector of unity magnitude. Further, this
orthonormal set of parity equations corresponds to a 2 x 3 linear transformation matrix P -
of the controller signals comprised of the eigenvectors of the 3 x 3 diagonal correlation
matrix A of the parameter space. This transfers the uncorrelated Gaussian distribution with

zero means and equal variances of the parameter space to the parity space (diagonal

correlation matrix D):
—2 "
2 -1 -r 16 2 0 0
po| 76 70 Bl popo| st L] a- o> 0
1o L -1 Tl e 2
2 {2 -1 -1 0 0 o
/6 2

Theorem For every n x n real symmetric matrix A there exists anm x n
(mzn) real orthogonal matrix P such that PAP-1 =D, or, equivalently, such
that PAPT =D, where D is a diagonal matrix. [Bronson]

Here,

D = PAP’ = P0'213P'1 = 0’212 where I, = nxn identity matrix

The resultant two-dimensional parity space is depicted in Figure 4.20. The goal of this
parity vector approach is to generate signals which are insensitive to modelling errors,
highly sensitive to failures, and respond to different failures in easily recognized ways to
facilitate isolation. Neglecting error terms, the fault signatures of the three controllers are

defined by three distinct and equidistant vectors (f1, f2, and f3, respectively) of equal
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magnitude F and their three corresponding inverses which split the plane into six equal
pieces. Our fault detection scheme takes advantage of this balanced or symmetrical
property of uniform detectability by utilizing a circular threshold of radius Ty as a
comparison test against the radius r of the parity vector. Our fault isolation scheme divides
the parity space into six equal pie sections of 60° each and centers them about each of the
three fault signatures and their inverses. Hence, the parity space is also further transformed
to polar coordinates of radius r and angle 6 (Equations 4.28,4.29). The definition of full
scale magnitude (FS) corresponds to an additional, outermost circle in the parity space

which confines the parity vector for all time. [Gai,Weber]

The drawback of this comparison test is that our detection scheme is also insensitive
to certain combinations of concurrent faults; specifically, a dual or triple fault where the
resultant fault vector (f) lies within the circular threshold Ty (A blind spot, if you will).
Where one fault alone might be of significant magnitude to pass beyond the circul-ar
threshold and hence be observable by the comparison test, the resultant fault vector in the
parity space (as determined by Equations 4.26, 4.27) cancels this effect and the faults
become hidden from the test. The probability of a hidden dual fault or hidden triple fault
are determined below for small threshold Ty (Equations 4.30, 4.31). A uniform, equivalent
fault distribution is assumed for all controllers (the faults have an equal chance of achieving
any magnitude up to full scale and, therefore, a fault vector has an equal chance of reaching
any point in the error space). The probability of the occurrence of a hidden fault can be
based on the ratio of the area of possible hidden fault vectors (as depicted in Figures 4.21
and 4.22) to the total area of possible fault vectors in the three-dimensional fault space.
Note the resemblance of the area of possible dual hidden fault vectors (Figure 4.21) to the
hidden space of the difference test for the DDRS (Figure 4.3). The following analysis is
only valid for small threshold T because it does not account for limiting effects to the area

of possible hidden fault vectors near the fullscale (FS) values of the fault space.
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Pr ility of a Hidden Dual Fault in TRS (given ual fault has occurred

-»

Without Loss of Generality (WOLOG), assume f; = 0.

Pr{ Hidden Dual Fault | £, & f, Dual Fault, f, =0} = Pr{r=/p? +p} <T,| f, &f;,f,=0)

2
3(/2 Ty T
= Pr{|f22+f32-f2f3| <3t} = 2 ¥ _ 9L

2 2 FS)? 8 FS’
: 9T .
Pr{ Hidden Dual Fault | TRS Dual Fault } = 5 (Equation 4.21)
8 FS
f 3
5
T, 5

2 2 _ 3
lg, +£, £ 8,1 <37,

Figure 4.21 Hidden Dual Fault Represented in Parity and Fault Spaces
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Probability of a Hidden Triple Faultin TR iple fault has occurred

Pr{ Hidden Triple Fault | f, & f, & f, Triple Fault } = Pr{r=/p?+p} <T,If, &f, &)

(2+1>(J-T,> &

@ FS)’ 162 FS°

= Pr{|f +f +f - £f, - f,f, -ff|

to|w

3
Pr{ Hidden Triple Fault | TRS Triple Fault } = —Z—J—EL

(Equation 4.22)
16/2 ES°
fl f3
3 o4
T,‘/——z—
2 ;5
, E
|f +f +f -f,f, - £ f, —ffI %

Figure 4.22 Hidden Triple Fault Represented in the Fault Space
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4.4.2. Detection Scheme Optimization with Bayes Criterion

Our fault detection scheme is analyzed as a classical, M-ary hypothesis test (M=4)
with a fixed, siﬁgular data sample. [Van Trees] With each sample, it is assumed that a
decision from M possible decisions must be made as to which event of M possible events -
has occurred. Thus, there are M possible alternatives or event-hypothesis pairings each
time a decision must be made. The four events Eo, E1, E2, and E3 in our fault detection
scheme are that no fault, a single fault, or a hidden fault of dual or triple nature has
occurred, respectively. Our decision will be facilitated by a unique physical manifestation
associated with each event (i.e. the magnitude with which each event affects the measurable
parity vector p). Dual and triple faults other than a hidden fault are assumed to be
indistinguishable from single structure faults with respect to the threshold test and are,
therefore, included in event Ej. This fact has important ramifications in our attempt to
isolate a fault to the structure in which the fault occurred. Event E; is represented as an
additive fault vector of magnitude F (Figure 4.20) which causes the parity vector to shift
outside the circular threshold Ty. This analysis is concerned with the worst-case
magnitude of f (fyin) Which is the smallest fault (and, thus, the hardest to detect) of
accountable cost for the current application. A major concern is that event Ep and E3
(hidden faults) have no effect on the parity vector and cannot be distinguished from normal

operating conditions.

2 3
3 2, 9T 3 7Y3 T

= p(E) = R(t); P, = 3R.(1) Q) —=; P, = Q) ———; P,=1-P -P, -P

0 S 2 S S SFSZ 3 S 16J_2—, FS3 1 0 2 3

Equations 4.23 - 4.26

84




Our fault detection scheme is optimized by using a generalized likelihood ratio test
(GLRT) which is based on a degenerated Bayes criterion. [Van Trees] The Bayes criterion
assumes the a priori determination of the event probabilities, the conditional probabilities
for each decision given the occurrence of each event, and the costs associated with each
possible event-hypothesis pairing. For this exercise, the Bayes criterion is degenerated
such that only two hypotheses are of importance (Ho = valid performance, Hy = fault

detected) and only eight alternate pairings are possible.

An average cost function or risk (R) is determined for our fault detection scheme
and is minimized with the likelihood ratio test (LRT). The special cost assignment where
correct decisions incur no penalty and incorrect decisions incur the same penalty is utilized.
With this cost assignment, risk is equivalent to the probability of decision error. The
likelihood ratio, denoted by A(r), is determined directly from the ratio of the envelope's
marginal densities under either event. The resultant test for our detection scheme compares
the radius r to the derived threshold Ty and is thus generalized in order to account for a fault

in any controller.

The following analysis draws heavily upon the theory of envelope detection used
quite commonly in radio communications and radar. [Schwartz, Peebles, Shanmugam]
We shall first consider the case of normal operating conditions where only noise is present
(i.e. Event 0). Recall from Section 4.2.1. that the components of the parity vector (p; and
p2) are Gaussian, uncorrelated, and hence statistically independent. Further, these

parameters were transformed to polar coordinates (r and 6) and the Jacobian of this
transformation is readily found to be the radius r (i.e. dx dy = rdr dB). The probability

distributions for these variables are as follows:
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1
p(P,, P, E,) = —— expl-
1 P2l g ol p(

1 (P2 +p3)
p(pl’ le Eo) = 51;? CXP( 120_ : ) = CXp(-—-)

p,0 1 Eo) exp( )
21to 262 (Equations 4.27, 4.28)
To find the marginal density functions for the envelope and phase alone, we simply average

the joint density function over all possible values for the angle and radius, respectively:

prIEy) = J'p(r,elEO)ae z exp( ) pOIE,) = Jp(rOlEO)ar =L
° (Equatlons 4.29, 4.30)
The marginal density of the envelope is the Rayleigh distribution which is limited to
positive values (shown in Figure 4.23 as F/o = 0). The conditional probability of false

alarm (P1g = Pga) is easily found to be:

L)

P, =P, = Ip(rIEO)ar = -exp(--zr%)]Tr = €
T,

T
52! = Fo
(Equation 4.31)

Next, we shall consider the case of a fault condition where a fault vector £ of
magnitude F is present (i.e. Event 1). The components of the fault vector will be denoted
f1 and fp. The probability distributions for the parity vector and its transform are as

follows:

2 2
(p1 - fl) + (p2 - f2) ) 1 exp( 2p1f1 2p2f + F
202 2162 202

2 _ _ . 2
exp (- r 2rf1cos6 2rf251n9 +F )
2 20°

(Equations 4.32, 4.33)

p(r,BlE) = —&
1 2no
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The conditional probability of missed fault detection (Pp1 = PMp) is more difficult to solve.
The probability of missing any of the fault signatures (f1, f2, and f3) is equal for all three
cases due to the symmetry of the fault signatures and the balanced nature of the Gaussian
parity vector. Also, the prior probabilities of any of the three faults occurring are equal
(i.e. 1/3). Hence, PMp is equal to the probability of missing any one of the three fault -
signatures. We shall restrict the analysis to only one of the three possible fault signatures:
specifically, a fault on controller one (f) where f; = F and fp = 0. The marginal density
function for the envelope is found by averaging the joint density function over all possible

angles:

2n ) m
peit) = [p015)00 = < exp(-rz”;f ) [exp(LES20 ) a6
0 2nc 2 3 G

_ 2+ F F
peif) = L exp(- ) L)

(Equation 4.34)

The integral in Equation 4.34 cannot be evaluated in terms of elementary functions but is
found to be equivalent to the modified Bessel function of the first kind and zero order Ip(z).
[Schwartz] This marginal distribution for the envelope is often called the Rician or Rice
distribution (Figure 4.23 by Peebles) in honor of S. O. Rice of Bell Telephone
Laboratories who developed and discussed the properties of this distribution in a
pioneering series of papers on random noise. [Rice] The Rician distribution is equivalent
to the Rayleigh distribution for small SNR (i.e. F/c = 0) and approaches a Gaussian
distribution with mean F and variance 62 for large SNR [Schwartz]. Hence, for large

SNR, the conditional probability of missed fault detection (Pg1 = PMp) is approximated:

T,
. 1« T-Fy_1 T, -F
P =P, = p(rIE)8r=—erf(-——)-—erf(———)=l-P
MD T o1 1 2 ) 11
T, o/2 o/2
(Equation 4.35)
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The conditional probability of fault isolation (Py) is also difficult to solve. Again,
the probability of correctly isolating any of the fault signatures (f3, f2, and f3) or their
inverses is equal for all six cases and each case is equally likely (i.e. 1/6). We shall
restrict the analysis to only one of the six possible cases: specifically, a positive fault on
controller one (f1) where f1 =F and f3 = 0. The marginal density function for the phase is

found by averaging the joint density function over all possible radii: [Schwartz]

- ] _ 1 i F cosO F F~ sin’0 F cosf
pOIf) = Jp(r, Ol f)or = o exp( )+ exp( v )1 + erf(FC08Y. - )]

pOIf) =

E exp(- E—2§?—) for large SNR and small angle 6
o/2n 202
(Equation 4.36)
The marginal density of the phase is depicted in Figure 4.24 by Peebles. The curve is
symmetrical about the assumed zero phase angle of the fault signature. For small SNR, the
distribution reduces to a uniform probability of 1/2x as found earlier. For large SNR, the
curve peaks markedly about the assumed phase angle and approaches an impulse function.
Thus, the probability of fault isolation approaches certainty as the SNR increases. For
large SNR and small angle 6, Schwartz found that the phase density can be approximated
by a Gaussian distribution in radians of zero mean and a standard deviation equal to the

SNR inverse of 6/F (Equation 4.36). [Schwartz] In this case, the conditional probability

of fault isolation:

/6
= | p©1£)20 = erf(-%E
-[ ! (661/5 )
-n/6
(Equation 4.37)

For example, the probability of fault isolation is approximately 99.75% for a SNR of 5.77.
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An average cost function or risk (R) equivalent to the probability of detection error
(PError) is minimized with the likelihood ratio test (LRT). The likelihood ratio, denoted by

A(r), is determined directly from the ratio of the envelope's marginal densities under either

event.

APy = %i’j‘% = (L (6} +) - @ - ) - - )'])
(Equation 4.38)

However, the fault vector f of event Ej is unknown a priori. The maximum likelihood
(ML) estimate of the fault vector components f) and f; are those values which maximize the
likelihood ratio. The above Equation 4.38 implies that the fault vector estimate of f =p
where fi = p; and fp = pp provides the maximum or worst-case likelihood ratio
corresponding to our ignorance of the fault vector. [Walker, Whalen] Yet, we still wish to
include our knowledge of the magnitude F of the fault vector in the analysis. Therefore,

the squared magnitude F2 = 2/3 fiin2 is substituted for (12 + f22) in the likelihood ratio

and the ML estimate is utilized in all other instances:

A(Pl,pzl ?l=p1’ ?2=p2) = exp( ;:;2— [ 2p% + 2p% - Fz])
(Equation 4.39)

As discussed in Section 4.3.2., the likelihood ratio is compared with the ratio of the priors

N = (Po - P2 - P3)/P1 = Pg/P; (Equation 4.15). The resultant test for our detection
scheme compares the radius r to the derived threshold Tr and is thus generalized in order to

account for a positive or negative fault in any controller.

say H,
[2. 2 > 2
Irl ={/p]+P; say<H T,=\/($210g11+—;—fmirl
0

(Equation 4.40)
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Similarly, an average cost function or risk (R) equivalent to the probability of
detection error must be determined and minimized with the likelihood ratio test (LRT) for
each of the three possible fault signatures. The likelihood ratios, denoted A1(r), Aa(r), and
Aj3(7), are determined directly from the ratio of the envelope's marginal densities under
event E; for the respective fault signature and event Eg. Here, the fault vector f of event Eq -
is known a priori. The result is three tests comparing the absolute value of each fault
signature's characteristic equation to a derived threshold T1. They are generalized in order

to account for a positive or negative fault in the controller.

Comparison Test for a Fault on Controller 1:
- - 4
Al(pl’pZl fl— F= -J__6- fmm’ 2 =0) exp( [ p1 min Fz])

say H,

|2 p. | > T, o’ logn + =
1 < i
JE say HO I fmin m n
(Equations 4.41 - 4.42)
Comparison Test for a Fault on Controller 2:
1 12 2 2
Aypypyl £y= J—- i 2= J— £ ) = exp( Py} [_J—E_ Pifin * T Pofin = F 1)
say H
|ip1+1_p2| Z : T o’ logn +
R sayHy, | fmm “min
(Equations 4.43 - 4.44)
Comparison Test for a Fault on Controller 1:
_ -1 _ -1 1 -2 _ 2
A3(p1’p2l f1 —J: mm’ f2 E fmin ( 2 [ p1 min —_/—2: p2fmin F ])
say H1 g
Iip1+'ip2| : TI logm + _fmm
J_6- B 'JE say HO fmin

(Equations 4.45 - 4.46)
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A second method for fault detection can be formulated from the comparison tests
for the individual fault signatures. With this additional knowledge of the fault signatures,
the maximum likelihood (ML) estimate of the actual fault incurred is the average of the six
possible cases: the three fault signatures and their respective inverses. However, the
average of the six cases is zero due to the symmetry of the fault signatures. Thus, we shall -
take the average of the three generalized comparison tests above. This corresponds to the
worst-case scenario of not knowing which of the three equally likely fault signatures has
occurred. Yet, this still includes more information than the first method where we only
knew the magnitude F of the fault vector. The resultant test is determined by first squaring
both sides of the three generalized comparison tests and subsequently averaging the

comparators on the left side of the equations:

say H,
2.2 > 2
3P < T
say H,
say H,

1 2,1 1.2 > 2

=pi+—= + = T

sPLt PPt Py say<H0 I

say H,

1.2, -1 1.2 >

Pt = PPt P < Ty

6 G 2 say H, I
Averaging yields

say H,

> 2

Il = /p2+p 2 T, =.3T (6—+20‘2)logn + Lg2
say H,
(Equation 4.47)
where
Irl = \/%p§+(%p'f Jl_p1p2+ P+ @& pl+ lelp2+ p2) =Pl +D;
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A comparison of the two methods of fault detection is illustrated in Figures 4.25
and 4.26. Both methods compare the radius r of the parity vector to a derived threshold Tr.
This optimal threshold is the essence and embodiment of each method and is the only true
distinction between the two. Yet, one can observe a close resemblance between the two
thresholds in Equations 4.40 and 4.47. The difference is that the coefficient of the first
term (log M) is approximately twice as large for the second method as it is in the first
method, while the second term remains the same. This causes the logarithmic effect of the
ratio of priors (1) to be increased for the second method. The thresholds are equivalent for
the two methods when the probability of any fault occurring is equal to the probability of
normal operation (p(Eg) = 1 - p(Eg) = 50%, n = 1). The threshold for the second method
is initially greater than for the first at the beginning of the mission (large 1) but has a faster
descent to zero later in the mission (small 1) when the probability of any fault occurring

dominates the event space.

The resultant test is a more optimal detection scheme across the life of the mission.
In this exampv'le, the probabﬂity of missed detection (Pmp = Po1) is found to dominate the
probability of detection error. The probability of error is slightly greater for the second
method initially due to a larger threshold, but becomes much smaller as the probability of
any fault occurring becomes dominant and the threshold is more dramatically reduced. The
probability of false alarms (Pra = P10) and of a dual or triple hidden fault (p(E2) and
p(E3)) are found to be relatively insignificant in this exercise. The optimality of the second
method assumes a longer mission time where the control system goes through a number of
successive stages of reduced operation. For very small mission times, the first method is a
more optimal fault detection scheme. However, a triple redundant control structure would

be inappropriate for short mission times.
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4.4.3. Triplex Fault Isolation and Reconfiguration

Upon fault detection within the control structure, diagnostic schemes must be
initiated to isolate the failed structure(s), locate and report the faulty module(s), and
reconfigure the zystem to provide continuous valid control. The balanced nature and
symmetry of the TRS allows efficient fault detection and isolation for the controllers with
the two-dimensional parity space. Each controller has a distinctive fault signature in this
parity space. The collection of generalized comparison tests for these individual fault
signatures (Equations 4.42, 4.44, and 4.46) can be used in a straightforward manner for a
fault isolation scheme due to the uniform detectability of the fault signatures. The three
generalized comparison tests section the parity space as depicted in Figure 4.27. Several
sections overlap and therefore represent conflicting decisions between events. Conflict
resolution is achieved by associating the faulty controller with the largest comparator C;
(Equation 4.48): [Gai]

max {C, =12 p;C,=1-Lp+ EPhC=lT

p2l} C. = Fault on Controller i
' 16 '

J_ J_
(Equation 4.48)
The resultant isolation scheme sections the parity space into six equal pie sections centered
about the fault signatures and their inverses (Figure 4.28). It is assumed that fault isolation
is only initiated upon detection of a fault. Thus, the central hexagon which represents the
threshold for fault detection (Figure 4.27) is reduced to a point at the origin for the fault
isolation scheme. This is equivalent to setting the threshold T for the comparison tests to
zero. The conditional probability of fault isolation (Py) for this decision area is derived

above (Equation 4.37) and is conditioned upon fault detection.
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The conditional probability of fault isolation for dual faults must also be addressed.
Assuming a uniform fault distribution where the fault vector has equal chances of occurring
in any of the six pie sections of Figure 4.28, the conditional probability of dual fault
isolation is easily determined to be two-thirds of the total possible decision area (Pp2 =
66.6%). This allows correct isolation of the fault to either one of the two faulty controllers,
while the other is reconfigured with the valid controller to the DDRS. Detection of the
second fault would have to be accomplished at this secondary stage with the difference test.

This is further analyzed below.

Similar to the hidden faults of the above detection scheme, there are dual faults
which cause improper fault isolation for the isolation scheme. Incorrect isolation occurs
with respect to a common bias fault: a dual fault where a fault of approximately equal
amplitude occurs on two controllers (see Section 4.3.1, Figure 4.3). The combination of
any two fault signatures of equal magnitude in the parity equation (Equation 4.26, 4.27)
produces a fault vector equivalent to the inverse of the third fault signature. Our analysis of
the DDRS suggested that the probability of a common dual fault on its two controllers is
T/FS where T is the threshold of the difference test and FS is the fullscale for the
parameter. There are three such possible pairings for the TRS (i.e. 12, 23, and 13) and
each pairing has equal probability. Thus, we shall analyze only one pairing of a common
bias fault on controllers two and three which produces a fault vector in the direction of f
‘(Figure 4.29). The shaded portion of Figure 4.29 represents the decision area of proper
fault isolation (Aj) for the dual fault. For small thresholds T, this decision area is very
small and the conditional probability of common bias fault isolation is approximated by the
complement of the conditional probability of fault isolation (P2p = 1 - P1, Equation 4.49).
This is a worst-case approximation as the effects of the Gaussian error are not included.

Note that hidden dual faults are also common bias faults.
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Figure 4.29

Common Bias Fault Represented in Parity and Fault Space
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Error

Reconfiguration consists of: 1) removing the faulty controller from the output

estimation scheme (i.e. averaging) yet still including it as a voter in the FDI scheme of the

TRS, and 2) immediately performing FDI as per the DDRS upon the two remaining valid

control structures. The faulty controller is simply returned to valid status upon a successful

comparison test for the TRS. This reconfiguration scheme allows recovery from false

alarms and transient faults and maintains the independence between successive comparison

tests of the TRS over the mission. However, upon reconfiguration to the DDRS, we are

left with only one parity equation (i.e. the difference test) and the parity space shrinks

down into a one-dimensional line in which direction is meaningless. Hence, a dual fault

can only be detected, not isolated, efficiently by the DDRS (Section 4.3). Subsequent

decisions must be based on further analysis of the individual controllers (simplex FDI,

Section 4.2). Figure 4.30 depicts the decision tree associated with our FDI scheme for

three levels of redundancy where correct decisions are denoted with a check mark. The

probability of each possible system state and of the total system error can be directly

determined from the decision tree (Equations 4.50 - 4.59). (Note: system shutdown is not

considered as a possible system state in this exercise!)

System States for the TRS

Triple Structure, All Working 5: Dual Structure, Both Working
Triple Structure, Two Working  6: Dual Structure, One Working
Triple Structure, One Working ~ 7: Dual Structure, None Working
Triple Structure, None Working

Single Structure, Working
Single Structure, Not Working

W R

Pr ility of System Error for the TRS

T

3T 2 D 2T
Pg, + Py + Pg, + P + Po + Py + Re Py g +3Qg Ry Py PP +3Rg Qg Pyy(1-P) Py

QS3 + 2Rg QS2 for the optimal fault detection and isolation scheme (Equation 4.50)
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Probability of Each Possibl tem State for the TRS
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Equations 4.51 - 4.59

where superscript T and D represent TRS and DDRS conditional probabilities,
respectively.
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4.5. Unrecoverable Reconfiguration

A second method of reconfiguration for redundant structures upon fault detection
and isolation is to simply ignore the faulty controller in all future operations. This method
places a higher cost on structure performance under fault conditions than upon performance
at a reduced level of redundancy. However, this static reconfiguration scheme does not
allow for recovery from false alarms or transient faults. Further, the probability of false
alarm over consecutive samples becomes a very important statistic and is found to quickly
increase with the number of consecutive samples (k). This dramatic increase is due to the
memory-less or independent nature of the single sample tests presented above for the FDI

scheme. [Walker]

Pr{Any False Alarm during k Consecutive Samples} = 1 - (1-Pg,) 5 (Equation 4.60)

An example of this sequential decision error is presented in Figure 4.31 where Ppa =
0.27% (as determined for our example of a fault detection scheme for the DDRS based on
the Neyman-Pearson criterion, Section 4.3.3). A small sample frequency relative to the

MTBEF of the controllers (e.g. 1 Hz.) would yield potentially disastrous results.

1 Probability of False Alarm during k Consecutive Samples

|
1

0.8

0.6

T
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Figure 4.31
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4.6. Conclusions

In contrast with current fault-tolerant control schemes, the dual-difference
redundant structure (DDRS) and triple redundant structure (TRS) provide real-time fault
detection and error accountability for sensor systems in an untended manufacturing
environment without the use of a process model. Also, these active redundancy schemes
are one step beyond passive schemes (e.g. TMR or NMR) towards complete fault coverage
in that fault occurrences are detected and not merely screened. The control structures
provide fault-tolerant control (i.e. fault detection, isolation, and reconfiguration) to the
extent of their capabilities. Reconfiguration consists of a graceful and recoverable
reorganization of the system to a structure of lesser redundancy and reduced performance.
Hence, each redundant control structure is a subset of all structures of greater redundancy.
For example, the triple redundant structure provides both efficient fault detection and
isolation with a rather practical FDI scheme. Upon fault detection, the TRS is reconfigured
to the DDRS with the two remaining valid controllers. In this manner, fault-tolerant control

is achieved.

The fault detection and isolation (FDI) scheme assumes a classical, M-ary
hypothesis test with a fixed, singular data sample. Thus, there are M possible alternatives
or event-hypothesis pairings each time a decision must be made. With any decision-
making process comes the possibility of decision errors; in this case, there is an inherent
give-and-take between the two decision errors of false alarms and missed detections. With
any FDI scheme, it is found that the probability of these decision errors is inversely
proportional to the failure signal-to-noise ratio (SNR). This analysis is concerned with the
worst-case fault magnitude of fyjn which is the smallest fault (and, thus, the hardest to
detect) of accountable cost for the current application. It is further generalized to account
for both positive and negative faults. A second concern of decision error is the possible

missed detection of certain multiple faults which are hidden from the FDI scheme. For
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example, the difference test is insensitive to a dual fault where a fault of approximately
equal amplitude occurs on both controllers. This analysis assumes a uniform fault
distribution across the space of all possible faults and found the effect of multiple faults on
the probability of decision error to be negligible. The resultant set of system states and
their associated probabilities is determined from a decision tree for each redundant structure

based on its FDI and reconfiguration schemes.

Several fault detection and isolation schemes are examined for each redundant
structure. The FDI scheme can be optimized by using a generalized likelihood ratio test
(GLRT) which is based on a degenerated Bayes criterion. This analysis utilizes the special
cost assignment where correct decisioﬁs incur no penalty and incorrect decisions incur the
same penalty. With this cost assignment, risk is equivalent to the probability of decision
error. The likelihood ratio is determined directly from the ratio of the marginal or
conditional densities of the parameter or parity vector under either event. Another possible
FDI scheme is based upon the classical Neyman-Pearson criterion of radar detection
theory. Here, the conditional probability of false alarms Pgy is constrained to remain less
than some arbitrarily small value o, known as the level or significance level of the test, and
then the conditional probability of fault detection Pp is maximized to some value ( 1-B),
known as the power of the test. The resultant test for either FDI scheme compares a
significant statistic (e.g. the radius or absolute difference) to a derived threshold and is thus
generalized in order to account for a fault in any controller. This threshold is held constant
by the Neyman-Pearson criterion and is completely defined upon choosing the level of the
test (). For the Bayes criterion, the threshold is varied according to the prior event
probabilities of the control structure in order to minimize the probability of decision error.
For example, the threshold is originally made quite large compared to the fault magnitude
while the probability of normal operation is high and is subsequently pulled closer to the

origin as the probability of a structure fault becomes predominant.
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In the next chapter, we analyze all relevant a priori uncertainty or entropy within the
control system. The minimized Gaussian error function and the maximized exponential
reliability function provide a complete concept of all a priori knowledge of the control
structure. The marginal or conditional probabilities of the FDI schemes describe the
performance statistics associated with the redundant structure. The resultant set of system
states and their associated probabilities, as illustrated by the decision tree, represents all a
priori uncertainty in the control system. Information theory defines entropy as a
logarithmic measure of the randomness or 'choice' involved in an event or the prior
uncertainty of the outcome of an experiment. This metric of uncertainty allows for

comparisons of the effective system performance for different redundant structures.
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Chapter 5:  Entropy Analysis of Redundant Structures

The concept of entropy has a rich history that defies disciplinary boundaries in its
application. The word "entropy" as a scientific concept was first used in thermodynamics
by Clausius (1850). Its probabilistic interpretation in the context of statistical mechanics is
attributed to Boltzman (1877). However, the explicit relationship between entropy and
probability (Equation 5.1) was recorded several years later by Planck (1906). This thesis
draws heavily from Shannon's celebrated paper (1948) on information theory where
entropy is used as a measure of information (or, more to the point, missing information).
Basic to the concept of information is the notion of uncertainty; the more uncertain we are
about the outcome of an event, the greater will be the amount of information associated
with the outcome. If we can predict in advance the outcome of an experiment, then no
information has been édnveyed by the experiment. Jaynes (1957) reexamined the method
of maximum entropy (MEM) and applied it to a variety of problems involving the
determination of unknown parameters from incomplete data. Other fields of research have
also delved into the application of entropy. Weaver wrote:

Dr. Shannon’s work roots back ... to Boltzmann’s observation, in some of his
work on statistical physics (1894), that entropy is related to “missing information,”
inasmuch as it is related to the number of alternatives which remain possible to a
physical system after all the macroscopically observable information concerning it
has been recorded. Szilard (1925) extended this idea to a general discussion of
information in physics and von Neumann (1932) treated information in quantum

mechanics and particle physics. Weiner has been ... concerned with biological
application (central nervous system, etc.). [Shannon]

The most famous application is the Second Law of Thermodynamics: the entropy of a
system (e.g. the universe or a control structure) will always increase over time. An optimal
structure or system design with respect to entropy would be one which originates with a

minimal entropy from all perspectives and degrades at a minimal pace. This widespread
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application of entropy attests to its fundamental nature and allows for linkage into a more
comprehensive system representation of uncertainty by incorporation of other system
entropies: the process and its disturbances [Papoulis], the control scheme [Weidemann,
Weiner] and planrling procedures [Valavanis], reasoning and other information processing

algorithms [Stephanou], etc.

5.1. Measure of Uncertainty in the A Priori Knowledge

Our goal, thus far, has been the definition of all a priori knowledge associated with
redundant structure performance. The reliability analysis defines how long the structure
will operate without failure; while the error analysis defines how accurate the structure will
operate given that no failure has occurred. Due to the inherent uncertainty in this
knowledge, conditional error is characterized by a Gaussian density function and reliability
by an exponential distribution. The marginal or conditional probabilities of the FDI
schemes describe the performance statistics associated with the redundant structure. The
resultant set of system states and their associated probabilities, as illustrated by the decision
tree, represents all a priori uncertainty in the control system. Information theory defines
entropy (H) as a measure of information, choice, and uncertainty. [Shannon] Entropy is
a logarithmic measure of the randomness or ‘choice’ involved in an event or the prior
uncertainty of the outcome of an experiment. It can be formulated from the probabilities of
an exhaustive set 6f n possible events or experiments (discrete case) or from the pdf of a

continuous distribution (continuous case):

H = - p(X)logp(X) = - ptx)log p(x) ax
i=1 - (Equation 5.1)

This formulation is particularly suited for representing the uncertainty inherent within

discrete event sets for many reasons. Entropy increases monotonically with n and a
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‘ maximum entropy of (log n) is achieved when all I events are equally probable. This is
intuitively the most uncertain situation. Any change towards equalization of the

probabilities or uniformity in the density function causes a subsequent increase in the

is additive for independent experiments due to its logarithmic formulation. In conclusion,
entropy is a measure of our a priori knowledge or, more appropriately, lack of knowledge
(i.e. ignorance/uncertainty) in terms of our a priori probabilities. This metric of
uncertainty allows for comparisons of the effective System performance for different

redundant structures, -

. Uncertainty comparisons between discrete event sets can be easily made with an
entropy analysis of their associated probability sets. Binary sets, consisting of an event
and its complement, are the simplest case (n=2) and yet are the most important comparison
size or dimensidn found within digital communication theory. The entropy of a binary set
is maximized as the two events become equally probable (p = 0.5) and is minimized as one
event becomes certain. These concepts of uniformity and polarity form the basis for
comparisons between n-ary event sets. As mentioned above, any change or difference
between two N-ary event sets towards equalization of the n discrete probabilities determines
4 corresponding increase in the entropy of the sets (i.e. in comparison, a trend towards
uniformity in the probabilities indicates a trend towards greater entropy in the event sets).
The fact that entropy increases monotonically with n allows for comparisons of event sets
of different sizes. All things being equivalent, a discrete event set of larger size will have
greater entropy due to the added complexity of additional states, Thus, comparisons of our

' uncertainty about different discrete event sets are facilitated by entropy.
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The entropy of a continuous distribution is defined in an analogous manner to the
entropy of discrete event sets (Equation 5.1). However, an important distinction exists
between the two cases. In the discrete case, the chance variables are the events which are
mutually exclusive and their union is the certain event (p1 + p2 + ... pn = 1). Entropy is
defined for a given partition of the event space into a set of n distinct events. The
uncertainty or randomness of the events is, therefore, measured in an absolute way (i.e.
relative to the n-ary partition and its associated n probabilities; irrespective of the event
space) and, as seen in the preceding paragraph, this allows for direct numerical
comparisons of the entropies of discrete event sets. Uncertainty comparisons can even be
made between two independent event sets which have nothing to do with one another (e.g.
apples and oranges). In the continuous case, the chance variable is a measurement whose
value is relative to a eoordinate system with an assumed standard or measurement scale.
The entropy of a continuous distribution cannot be defined in an absolute fashion because
the events do not form a partition (n = ) and are of an arbitrary size dependent on the
coordinate system. Comparisons cannot be made between coordinate systems unless the
transformation or relationship between their respective unit volumes/vectors is known.
Uncertainty comparisons, therefore, can only be made between continuous distributions
transformed into or originating from the same coordinate system. Transformation of a
density function (Section 5.3) would assign a new entropy to the distribution relative to the

new coordinate system.

In spite of this dependence on the coordinate system, the entropy concept is as
important in the continuous case as in the discrete case. In fact, one conventional
uncertainty comparison is the change or difference in the entropy of a specific variable's
distribution (as opposed to uncertainty comparisons between multiple variables) as the

system passes into some other state or is affected by some event. In addition, the entropies
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of continuous distributions have most, but not all, of the properties of the discrete case.

Other distinctions due to this arbitrary scale of reference are listed hereafter:

The entropy of a continuous distribution can take any value in (-co, ). Zero
entropy for a given measurement scale corresponds to a uniform density over a unit volume
M = []..J 11log1dxjdxs...dxy = 0) and any distribution of smaller volume will have

a negative entropy.

If the density function is bandlimited to a finite volume &, maximum entropy of

(log o) corresponds to a uniform density of p(x) = 1/a. for all x:

o
= Lliogl gx = -log L =
H—Jalogaax— log o = loga
0

(Equation 5.2)

If the density function is limited to an average power, maximum entropy

corresponds to a Gaussian density:

2/ny 2
p(x) = Gaussian(0,0) = —LZ— e X /20 where o2 = J-p(x) x? 0x
oY 2%
logp(x) = logovV2rn + x*
- logp(x) = lo . S
gP g o2

H(x) = logol2n Jp(x) ox + 2—15". p(x) x% 9x
c

= log 6/2me

logoi2n + %
(Equation 5.3)

This direct relationship between entropy and variance implies that a minimum mean-square

error (MSE) design for Gaussian random variables is always a minimum entropy design.
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If the density function is limited to a half-line (p(x) =0 for x <0) and the first

moment or mean is fixed at B, maximum entropy corresponds to an exponential density:

p(x) = % c-x/[3 where B = J‘p(x) X 0X
HKx) = logBJp(x) ox + %J‘p(x)xax = logef

(Equation 5.4)

The entropy of the Gaussian conditional error function for an N redundant control
structure is H(g) = log(o'\/ 27nte/N) by Equations 3.3 and 5.3. The entropy of redundant
structures can be directly compared with respect to their scaling in %FS and it is observed
that the entropy of the error distribution is reduced with the level of redundancy employed.
The failure time density of the control structure is an exponential function (Equation 3.10)
limited to a half-line due to the causal nature of the process and has a fixed mean which is
estimated by MTBF. By Equation 5.4, the entropy of the failure time density is, therefore,
H () = log(e/L) = log(e * MTBF) and is directly related to the structure’'s MTBF.

Redundancy of the control structure provides an increase in the system MTBF and entropy.

Note that error and reliability are represented by distributions which maximize the
entropy with respect to the given information. Jaynes found that Information Theory
provides a constructive criterion (i.e. the maximum entropy method, MEM) for setting up
probability distributions on the basis of partial knowledge. [Jaynes] Among all
distributions which are concomitant with the available information, the selected density
function is the one which is maximally vague or minimally prejudiced regarding the
missing information. Jaynes further showed that the theory of MEM statistical inference is
mathematically identical with the rules of calculation provided by statistical mechanics.
Tribus demonstrated that all of the laws of classical thermodynamics can be defined from

Shannon's entropy using the principle of maximum entropy. [Tribus]
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Figure 5.1 Triangular Probability Density Function

The entropy of a triangular probability density function (Figure 5.1) can also be derived.
Averaging two independent random variables with uniform distributions of base width 2B

results in a triangular density of base width 2B. [Peebles]

0 B
1o = - [(BEE) 10g(B2X) ax -|(BZ) 10g(BE) ax
_[ Bz) B? (')’. B2 Bz)

0
o X2 L x (X x4 1)joe(BEx
Heo = X+ (g + 5+ el 32)]"3

+' X2 X (-x2 X 1) (B-x)]B
pro T

H(®x)

[-%105;(_11;) - % + —é—] + [-% + —% - —é—log(%)]

-l0g(F) +5 = log®Fe)
(Equation 35.5)

This distribution can be approximated by a Gaussian distribution with a standard deviation
of 62r = B/Y6 by Equation 3.6 and with an entropy of H(g) = log(B/\l ne/3) =

log(BVe) by Equation 5.3. The entropy of the triangular density is found to increase with
the base width and is less than the entropy of a uniform density (Equation 5.2) of same

base width (o = 2B) by an amount of log(2/Ve) = 0.2.
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5.1.1. Structure Certainty vs. Structure Performance

The entropy of the reliability distribution is interpreted as our uncertainty of the
normal behavior or operation of the control structure over time (with respect to some unit of
time). The greatef the control structure's MTBF; the bigger the reliability distribution over
time; and, therefore, the greater the entropy of the controller (Equations 5.4). In an
uncertainty comparison with respect to a common time frame, we are more certain in the
failure time of the controller with the smaller MTBF and reliability distribution. This is due
to two factors of the smaller distribution with respect to the larger distribution: the quicker
descent of its reliability over time (we quickly lose faith in its performance while our period
of uncertainty in the other controller’s performance is much longer) and the fact that its
reliability approaches zero sooner (we become certain that a failure has occurred while we
are still unsure of the o&er controller’s performance). These results are determined from
Equation 5.4 with respect to the failure time density function f(t) and its distribution (i.e.
the unreliability Q(t)). The structure with greater MTBF has a failure function with greater

spread and therefore greater entropy (Figure 5.2).

This representation of our uncertainty in a control structure's reliability betrays the
intrinsic trust or confidence we place in a controller with a greater MTBF and reliability
distribution. We assert that, "We are certain that the controller with a greater MTBF is
more reliable over the mission time." The important distinction to be made is that the
entropy of a control structure variable, as defined in Equation 5.1, is a measure of the
uncertainty in the knowledge of that variable (as defined by its pdf) and not a measure of
the chaos or discord caused by the variable to the structure. A control structure with lower
entropy is not necessarily a better system; we could be highly certain that the structure is
inoperative or in some other unwanted state. Care must be taken not to reduce uncertainty

at a cost to performance of the control structure.
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Figure 5.2 Entropy Comparison of the Reliability of Two Structures

Certainty in knowing the state of a system # Certainty or Confidence in system performance

5.2.  Effect of Transformations on Entropy

A special case of dependent event sets or distributions is when the dependence of
the event sets can be expressed as a transformation or function of one event to the other.
This transformation between event sets X and Y can be expressed by the equation y = g(x)
and, in this case, the entropies of the event sets can be compared with one another.
Independent event sets cannot be represented with a transformation. If the transformation
has a unique inverse x = g-1(y), then there exists a one-to-one correspondence between the
domain and range of the function (here, the discrete events of X and Y) and, therefore,
p(Y =yi) = p(X=x;) for i=1..n. For an invertible transformation, H(Y) = H(X).
If the transformation does not have a unique inverse, then there exists a solution y for more
than one value of x. Thus, the event set X is of larger size than the event set Y and has
greater entropy (H(Y) <H (X)) due to the added complexity of additional states. Here, the
transformation y = g(x) on the discrete event space X has resulted in a reduction in the

entropy. Similar results follow from the continuous case: [Papoulis]
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If the dependence between two continuous variables can be represented by the

transformation y = g(x), then
H(y) £ H(x) + E{ln Ig'x)I} (Equation 5.6)

with equality iff the transformation is invertible.

If the dependence between two continuous vectors can be represented by a set of n

functions y; = gi(x1,..., Xn), then

ﬂ(yl,m,yn) < !{'(xp"'vxn) + E{ln lJ(xl""’xn)l} (Equation 57)

with equality iff the transformation is invertible and where J(x1,...,Xp) is the Jacobian of

the transformation.

If the dependence between two continuous vectors can be represented by a set of n

linear transformations y;j = giXj = aj1X1 +. . . + ajnXp, then

H(yl,...,yn) = H'(xp""xn) + In Al (Equation 5.8)

where A denotes the determinant of transformation matrix G.

As an exercise, consider the linear transformation of rescaling the error budget of
the control structure (Equation 2.1) from units of %FS to Volts for a fullscale value of 10
Volts. This can be represented as y = x*10/100% = x/10%. The derivative of the
transformation g'(x) and the determinant of the [1x1] transformation matrix G is 1/10.
The probability density for the control structure error is defined as Gaussian and the
entropy of this pdf is directly dependent on the standard deviation (Equation 5.3). For our
example error budget, the standard deviation would be rescaled from 0.3276%FS to
0.03276 Volts by this linear transformation. The resulting entropy of the error density
scaled in Volts is found to be less than the entropy of the same error density scaled in %FS
(Equations 5.6, 5.8). This exercise shows the dependence of entropy upon the coordinate

system in defining the uncertainty of a continuous density.
H(y) = log(0.3267%FS{2re ) +10g(0.1) = 10g(0.03267V/2re ) = 0.135
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5.3. The Measure Function

A second formulation for the entropy of continuous distributions is suggested
(Equation 5.9). Jaynes refers to the addition m(x) to the entropy formulation as a "measure
function" which is proportional to the limiting density of the discrete or sampled points of
the density function p(x). If the precision of the random variable or coordinate system is
given as + A,/2, then the limiting density function is a uniform 1/Ax about each point.
Regardless, the measure function m(x) is introduced in Equation 5.9 in order to make the
expression dimensionless under thg logarithm and to remove the dependence upon
coordinate system. Hence, the choice of measure function determines the position of zero
on the entropy scale and is completely arbitrary. In particular, we might make m(x) = Ax =
1 to retain Shannon's fonnulation (Equation 5.1) and thereby associate zero entropy with
the standard unit of measurement for p(x). Proper choice of the measure function allows
for comparisons between continuous distributions by placing them on the same entropy
scale (i.e. with respect to m(x)). In addition, joint entropies can be formulated due to our
understanding of the relative contributions from different variablés upon system entropy.
This understanding is not possible with Shannon's formulation of entropy. [Jaynes,

Papoullis, Pugachev]
H = -I p(x) log%%)— ox = -J p(x) log p(x) ox - log A,
] (Equation 5.9)

Note that the equations for Shannon's entropy need only slight modification (i.e.

subtracting log Ax from its final form) to achieve Equation 5.9. We shall refer to

Equation 5.9 as the entropy for continuous distributions in all further discussions.
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The major change of this reformulation is that entropy is unaffected by rescaling of
the coordinate system and invariant to invertible transformations by proper choice of the
measure function m(x). First, we will consider rescaling of the coordinate system. Since
both the density p(x) and measure m(x) functions are of the same coordinate system, both
functions are transformed in the same fashion upon a change or rescaling of the variable x.
These changes cancel each other out in the logarithm and therefore entropy is invariant to a
change in variable. Second, Equations 5.6 - 5.8 describe the effect of a transformation
upon Shannon's entropy of a continuous variable or vector. Application of the measure
function is straightforward. For example, the entropy of the variable x upon invertible

transformation g(x) to the variable y is redefined as:

H(y) = HE). + E{loglg'x)l} + log% =HKx) + E{log%lg'(x)l}
’ (Equgtion 5.10)

If two continuous distributions are related by an invertible transformation, then uncertainty
comparisons are possible with respect to the measure functions by Equation 5.10. The
entropy of the random variable is unaffected by the invertible transformation y = g(x)

(i.e. H(y) = H (x)) by proper choice of the measure function Ay:

Ay = A*ig'(x)!
(Equation 5.11)

For scaling or linear transformations, this choice of the measure function Ay is equivalent

to the transformation of the measure function Ax and is determined by:

Ay = the transformation of Ax = g(Ax) = Ax*Ig'(x)l = Ax*gain.
(Equation 5.11)

In this manner, all random variables associated by an invertible transformation contain

exactly the same amount of information. Entropy is invariant to invertible transformation.
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5.4. Conditional and Joint Entropy

Another special case of probability is when the event sets or distributions are
conditioned upon one another. This dependence between event probabilities in a set is
expressed by conditional probabilities p(X;lYj) and the probability of an event in set X is
defined by the theorem of total probability (Equation 5.12). Similarly, dependence
between the probabilities of continuous variables is éxpressed by a conditional probability
density p(xly). Independent event sets or variables can be represented with an equivalent
conditional probability set or a uniform conditional probability density. Equation 5.13d
defines the mean conditional entropy H(XIY) of event set X with respect to event set Y as
the average of the entropy of the conditional probability set weighted by the probability of
getting that particular Y. Similarly, Equation 5.13c defines the mean conditional entropy of
a variable x with respect to a variable y. This quantity measures how certain we are of X
on the average when we know Y. Equation 5.14d and 5.14c define the joint entropy
H(X,Y) of event sets or continuous variables X and Y as the sum of the entropy of Y and
the mean conditional entropy of X with respect to Y, or vice versa. There are two
important results from this exercise. First, the entropy of an event set or variable
monotonically decreases as it is conditioned on other event sets or variables
HEXIY) <H (X)). Our uncertainty over an event set or variable is reduced when we can
base our decision on its relation to other event sets or variables. Independent event sets or
variables cause no such reduction in entropy (H(XIY) =H (X)). Second, the joint entropy
of event sets or variables is reduced if they are conditioned on one another. This follows
directly from the fact that independent events/variables cause no reduction in the conditional
entropies of the events/variables. As stated above, the entropy of independent event sets or

variables is merely the sum of the entropies of each component:

HX,Y)dependent = H(Y) + HXIY) < H(X,Y)independent = H(Y) + H(X)).
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Therefore, the worst-case or maximum joint entropy can always be defined as the direct
sum of the component entropies. In addition, the joint entropy function (Equation 5.14)
possesses an additivity property which allows the partitioning of the overall uncertainty of
several variables into the uncertainty of the first plus the uncertainty of the second

remaining after knowledge of the first, etc. [Shannon]

PXi = pXilYDp(Y1) + pXilY2)p(Y2) + ... + p(XilYn)p(Yn)  (Equation 5.12)

HXIY) = 2 p(Y) 2 (XY log p(XY) = Z p(Y) HXIY) < HX)
j i j

(Equation 5.13d)
HEX)Y) = -Z-p(xi,Yj) log p(X,,Y) = H(Y) + HXIY) = H(X) + H(YIX)

i,j

(Equation 5.14d)
ntin Distribution

$£0Y) = - [ ) [ pecty) log BB ax dy = - [ pexy) 1og ﬁ)"gg—gax 3y < H(X)

' (Equation 5.13c)
_ - p(x.y) _ -

HXY) = _U pCxy) log B dy = $(Y) + HEKIY) = HO0) + HY)

(Equation 5.14c¢)

However, one cannot say anything in comparison of H.(X) and H (Y) by merely knowing
that they are conditioned on each other. Given high confidence in X, this does not mean
we have high confidence in Y when it is conditioned on X (i.e. its dependence may be
weak, its conditional probabilities approaching equivalence). The inherent difficulties of
uncertainty comparisons between continuous variables holds for conditional variables (i..
arbitrary scaling or coordinate systems). Therefore, a measure function is still required to

properly formulate a joint entropy or make any uncertainty comparisons.
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5.5. Mutual Information and the Information Rate

The mutual information I(x,y) between two random variables is defined as the
measure of the amount of information given for one variable by observing the other.
Equivalently, it is viewed as a measure of the reduction of uncertainty within one variable

upon knowing the other. Mutual information can be represented in many equivalent forms:

HY) - HAYX) = HX) +H(Y) - HX,Y)
(Equation 5.15)

Ixy) = HX) - HXIY)

Ixy) = Iyx) = Hp(x,y) log 2XY)_ f() ’y()) xdy = 0

(Equation 5.16)

Note that mutual information cannot be negative because H(X) > H (XIY) (Equation 5.13)
and is zero for independent random variables because the uncertainty in one variable is

unaffected by knowing the other HH(XIY) = H.(X)). [Pugachev]

Invertible transformations are a member of a special class of "information
preserving transformations”. [Weidemann] From Section 5.2, entropy is invariant to
invertible transformations y = g(x) such that:

IXY) =HX)=H(Y) and HXIY)=HYIX)=0
For any other random variable z:

HXIZ) = HX)Y,Z) - HZ) - H(YIX,Z)
=HX)Y,Z) - H(Z) - HX1Y,Z)

H(YIZ)

Therefore: IX,Z) = HX) - HXIY) = H(Y) - HYIX) I(Y,Z)

Consequently, invertible transformation of a random variable does not change the mutual
information it may have with any other random variable. In practice, however, operations
upon a random variable are accompanied by a loss of information due to noise or other

interference.
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Channel
Source X Y PEstination
€

Transmitted Signal (x) Received Signal (y)
Noise Noise or Error (f)
Figure 5.3 General Communication System

Shannon evaluated the performance of a general communication system in the
presence of noise (Figure 5.3). In this context, a control structure can be considered the
channel which attempts to communicate control needs to the process while contending with
error or noise sources inherent within the signal transmission. These error sources are
represented by the error budget of Chapter 2. Due to these errors, it is not possible to
completely reconstruc£ ihe transmitted signal by any operation upon the received signal and
information is lost. Shannon found methods of transmitting or encoding the source signal
which are optimal in combating noise (detailed below). In this thesis, the source is fixed

and minimization of the information lost is the only possible optimization of the system.

The rate of information transmission (R) across the channel is expressed as the
mutual information between the transmitted and received signals (Equation 5.15, 5.16).
The first defining expression, H(X) - H (XIY), can be interpreted as the amount of
information sent less the uncertainty of what was sent; the second, H(Y) - H (YIX),
measures the amount received less the part which is due to noise. The ideal, noiseless case
is presented above as invertible transformation. No information is lost by such
"information preserving transformations" and transmission is simply the entropy of the
source (R =#H (X)). The worst case of noise or interference occurs when the transmitted
and received signals are independent. Here, the rate of information transmission is zero
(R =0). The optimal rate of transmission for a system is one which maximizes the mutual

information between the source and output of the channel.
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The capacity (C) of a noisy communication system is defined as the optimal or
maximum possible rate of transmission over the channel. A communication system reaches
capacity when its information source is "matched" to its channel. Optimization of the rate
of transmission consists of minimizing the lost information due to noise while maximizing

-
the information contained within the source:

max I(x,y) = max (HX)-HXIY)) = maxH(X) and min HXIY)
(Equation 5.17)

Alternatively, optimization of the rate of transmission consists of minimizing the

interference while maximizing the information contained within the received signal:

max I(x,y) = max(H(Y) - H(YIX)) = maxGH(Y)-H(E) = maxH(Y) and min H ()

(Equation 5.18)

In this thesis, the soul:éé is fixed and minimization of the interference or the information
lost is the only possible optimization of the control communication system. Minimum error
variance or deviation is, therefore, desired for a Gaussian noise source (Equation 5.3). In
the more general case of a bandlimited channel with additive Gaussian white noise, the

capacity is determined by the Shannon-Hartley Theorem:

C = Blog(l + S/N) (Equation 5.19)
for bandwidth B and average signal (S) and noise (N) power

A large bandwidth and signal-to-noise ratio (SNR) is desired in order to reach the greatest
capacity for the channel. This theorem also indicates that a noiseless channel has infinite
capacity. To reach the limiting rate of transmission of Equation 5.19, the source must
approximate bandlimited white noise (i.e. colored noise) in all statistical properties. This
ideal signalling scheme using noiselike signals approaches the channel capacity as the
transmission delay and number of signals approaches infinity. However, in practice, we
seldom try to achieve the maximum theoretical rate of transmission over the analog portion

of a channel; rather, we keep this portion of the system reasonably simple. [Shannon]
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By Shannon's Fundamental Theorem, the capacity for a noisy channel determines
the theoretical upper limit to the system's rate of information transfer with arbitrarily small
decision error. If the entropy of a source is less than or equal to the system's capacity
H(X) < ©), then there exists an encoding scheme for transmission across the channel
which achieves an arbitrarily small probability of error. This is possible by sending the
information in a redundant form and performing a statistical analysis on the differeht
received versions of the message. This reduction in decision error causes a subsequent
reduction in the lost information due to noise (i.e. H(XIY) — 0) and, hence, an increase in
the rate of transmission for the channel (i.e. R = H.(X)). However, these benefits are at a
cost of increased complexity and either: hardware for physical redundancy, or delay for
repeated messages over the same channel. The cost of errorless transmission is infinite
communication channels or infinite delay time. Hence, it is not possible to transmit
information over a noisy channel without some probability of error due. If the source

entropy is greater than the system's capacity, then information of an amount H(XIY) 2

‘iH',(X) - C is necessarily lost during transmission due to the definition of channel capacity.

Errorless transmission is not theoretically possible in this case. In conclusion, a system
designer always tries to optimize the rate of transmission to the channel's capacity by
maximizing source information and by minimizing information losses due to interference

through redundancy encoding. Shannon further adds:

An approximation to the ideal would have the property that if the signal is altered in
a reasonable way by the noise, the original can still be recovered. This is
accomplished at the cost of a certain amount of redundancy in the coding. If the
source already has a certain redundancy..., this redundancy will help combat noise.
For example, in a noiseless telegraph channel one could save about 50% in time by
proper encoding of the messages. This is not done and most of the redundancy of
English remains in the channel symbols. This has the advantage, however, of
allowing considerable noise in the channel. A sizable fraction of the letters can be
received incorrectly and still be reconstructed by the context. In fact this is
probably not a bad approximation to the ideal ... [Shannon]
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5.5.1. Capacity of Redundant Structures for Fault-Tolerance

Channel
Actual | f PN P | Decided
State State
Fault Vector (f) € Parity Vector (p)
Noise Noise or Error (€)
Figure 5.4 System State Decision or Infdrmation Channel

Here, the fault-tolerance of a redundant control structure in the presence of noise is
evaluated (Figure 5.4). In this context, a redundant structure can be considered the channel
which attempts to corféctly determine or communicate the current state of the system (S)
while contending with error or noise sources inherent within the decision. The system
states and error sources possible for a redundant structure can be identified by a decision
tree (e.g. Figure 4.18 and 4.30). This decision tree also represents explicitly the discrete
communication or information channel for a redundant structure where: the input (X) is the
prior information, the output (Y) is the system states, and the channel is the decision paths
between input and output as dictated by the conditional knowledge of the FDI scheme. Due
to decision errors in the FDI scheme, it is not possible to completely know the current
system state by any operation upon the parity vector and information can be lost. The
certainty of these decisions (min H(Y1X)), the granularity or number of the system states
(max H.(Y)), and the extent of our a priori knowledge (max H (X)) determines the capacity
(C) of the system for fault-tolerance (Equations 5.17, 5.18):

C = maxR = max HX) - HXIY)) = maxH((Y)-HYX)) =
max H(Y), max H (Y), and min H(YIX)
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The rate of information transmission (R) across the discrete channel is optimized by
maximizing the mutual information between the input and output states. First, the extent
of our a priori or input knowledge H.(X) is maximized. The entropy of the exponential
reliability distribution is defined by the MTBF (Equation 5.4); any increase in the MTBF
causes a logarithmic increase in the input knowledge. Hence, a more reliable control
structure with a greater MTBF is desired. Second, system or output knowledge H(Y) is
maximized by increasing the granularity or number of the output system states (see
Section 5.1. on entropy of discrete event sets). In Section 5.6.1., we shall find that
redundancy provides this increase. However, the gains of this additional knowledge
cannot be realized (and can even be at a detriment) if it is accompanied by poor utilization or
transmission losses. The channel loss or uncertainty of the FDI scheme is minimized by
approaching the ideal,’fhatchcd transmission scheme where: H(XIY) = H(YIX) = 0 and
R = HX) = H(Y). This corresponds to two possible ideal FDI schemes for redundant
structures: the perfect-case of errorless decision, where p00 = p11 = 1 and p01 =p10 =0;
and the worst-case of complete decision error, where p00 = pll1=0and p01 =p10=1.
Proper utilization of a redundant structure would also minimize the error variance of the
controlled parameter (Equation 5.18), which we shall find corresponds with the perfect-
case of errorless decision (Section 6.2). A large failure signal-to-noise ratio (SNR) is
required in order to approach the perfect-case. In conclusion, the capacity or optimal rate
of information transmission of a redundant structure for fault-tolerance is reached by
utilizing a highly reliable control structure at the greatest level of redundancy while
maintaining near-perfect FDI at all levels of operation. In practice, the capacity is never
reached due to cost and other limitations not included within an analysis of information
transmission. The key is to strive for higher transmission rates through reliability,

redundancy, or better FDI performance while minimizing any important cost functions.
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5.6. Entropy Analysis of Redundant Structures

As an example entropy analysis related to our study, redundant control structures

will be examined and compared with respect to a system or joint entropy Hsystem(t) which

is defined by the entropy of the system state 3(S) and the conditioned error function 3 (€)
for a given mission time (t). A table of the conditional error entropy H.(€) for given system
states has been compiled in Figure 5.5 to simplify these formulations. A redundant
structure operated with a FDI scheme (e.g. the DDRS and TRS of Chapter 4) can be further
analyzed with respect to the rate of information transmission for the FDI decision channel.
These two system entropies represent the a priori uncertainty inherent within a redundant
structure for a given time t of the mission. A control structure with a decision scheme of
maximum rate and minimum error variance is optimal with respect to entropy (Section 5.5.

and 5.5.1).

A table of the conditional error entropy H(g) is presented below for each possible
system state of the redundant structures which are analyzed. The probability distribution
for the error is derived in Section 3.1.1. for a system state with n failed and m working

structures (Equation 3.3 -3.7). The probability distribution for a single working control
structure is represented as Gaussian with zero mean and standard deviation ©
(6 = 0.3276%FS, Figure 2.4). The error distribution for a redundant structure is
represented as either: Uniform with a base width of o, or Gaussian with zero mean and
standard deviation 65. The entropy H(€) for these distributions is derived in Equations 5.2
and 5.3. The conditional error function when three structures are working is arbitrarily
chosen as the measure function m(x) and therefore its entropy will represent zero
uncertainty. The conditional error entropy with respect to this measure function is
represented as Hpm(€) in the table. Note that the entropy of corresponding system states is

reduced with each level of redundancy.
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System State nm Probability Density H(e) H(e)

Single Structure, Working 0 1  Gaussian Os =0 log(GN} 2ne) 0.55
Single Structure, Not Working 1 0  Uniform o =2FS log(2 FS) 5.54
Dual Structure, Both Working 0 2 Gaussian G5 = 6/V2 log(c\me) 020
Dual Structure, One Working 1 1 Uniform o =FS log(FS) 4.85

Dual Structure, None Working 2 0  Gaussian os = FS/N6 log(FS\]nc/3) 5.37

Triple Structure, All Working 0 3  Gaussian os = o/V3 log(o\ 2e/3) 0

Triple Structure, Two Working 1 2 Uniform o = 2FS/3 log(2 FS/3) 4.45
- Triple Structure, One Working 2 1  Gaussian o5 = FSV2/V27 log(ZFS\[;e_/Z—7 ) 4.97
Triple Structure, None Working 3 0  Gaussian os = FS/3 log(FS\/—Zn_e/;) 5.17

Figure 5.5 Error Entropy For Each System State

In Appendix B, an example entropy analysis for a single and dual redundant
control structure with respect to the failure time and conditioned error functions for a given
mission length T is also provided. This analysis examines the use of the continuous failure
time function as the basis for system uncertainty. Results are similar to those found in this

section but are much more difficult to reach.
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5.6.1. Entropy Analysis of Redundant Structures without FDI

This section examines the entropy of redundant structures which do not perform
fault detection and isolation. A system or joint entropy Hsyswm(t), which represents the
a priori uncertaintz inherent within a redundant structure for a given time t of the mission,
is formulated from the exponential reliability distribution and the Gaussian error function
conditioned upon the system state of the structure. For example, a dual redundant structure
without any FDI scheme has a discrete set of system states: both structures working, single
fault of either structure, and both structures inoperative. The size of the event set is further
increased with the number (N) of redundant structures. It is assumed that no decision is
made regarding the current state of the system and that all control structures are included
within the voting/estimation algorithm at any given time t of the mission. A FDI and
reconfiguration scheme would add more possible states/events for the redundant structure
as dictated by the decision trees presented in Chapter 4 (see Figures 4.18 and 4.30).
System entropy is formulated as the joint entropy of the discrete set S of system states and

the continuous Gaussian or Uniform density of the conditional error € (Figure 5.5):
Hoystem(®) = HESI) = HS ) + HEIS,H) (Equation 5.20)

The entropy of the system state set (S It) is formulated directly from Shannon's
equation (Equation 5.1) for discrete events and exhibits a characteristic, "humped" curve.
The entropy peaks just before reaching the MTBF for a single structure when all events are
equally certain and subsequently approaches zero as we become more and more certain that
all structures have failed (Q(e0)=1). Thus, the contribution to the system entropy becomes
negligible with large mission times. The entropy of the system state set increases
monotonically with the level of redundancy due to the increased size of the structure event
set. The failure rate of the example reliability budget (0.000142, Figure 3.7) is used in

producing the following figures.
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Entropy of the System State
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Figure 5.6 Entropy of the System State for Redundant Structures

Single Structure

HES I) = -Ry()logRy(1) - (1-Ry(®)log (1= R,(®)
(Equation 5.21)

Dual Redun I

(S 1) = - R0 log RA®) = 2Ry(®) Qq(t) log 2 Rg(®) Qgt) = Q5(t) log Q3(t)

(Equation 5.22)
Triple Redundant Structure
HS Ity = - Ro® log RA(®) - 3 Qq(t) R3(®) log 3 Q1) R3(t) (Equation 5.23)

- 3R() QX0 log 3 Ry Q) - QX log Q)
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The mean conditional entropy (€ IS,t) of the error function is defined as the
uncertainty of the error for a given state averaged over all possible states of the structure
(Equations 5.24 - 5.26). The entropy of the error function for each system state is
tabulated in Figure 5.5 with respect to a measure function m(x). The conditional error
function when three structures are working is arbitrarily chosen as the meésure function
m(x) and therefore its entropy will represent zero uncertainty. In Figure 5.7, the meén
conditional entropy for the error monotonically increases over the mission time from the
initial system state where all structures are working (Gaussian with tight variance) to the
worst-case system state where all structures have failed (Uniform over fullscale range).
For the majority of the mission, the mean conditional entropy is found to increase with
additional levels of redundancy because of the corrupting effect of any single controller
failure to the estimation algorithm. However, redundancy does afford a lower initial and
final entropy due to the reduced variance of the error function upon averaging the controlled
parameter. Mean conditional entropy necessarily dominates the joint or system entropy

Hsystem(t) due to the continuous nature of the error function (Figure 5.8).

ingl T

Hel S,t) = Rg(1) H (el Working) + Q4(t) H (el Not Working) = Ry(t) * 0.55 + Qq(1) * 5.54

Dual Redundant Structure

HEl S,t) = Rg(t) H (el Both Working) + 2 R¢(t) Q (1) #H (el One Working) + Qé(t) H (el None Working)

H(el S0 = RX)*0.20 + 2Ry(t) Q1) * 4.85 + Q1) *5.37

Triple Redundant Structure

H(el S.0) = 3QORI®) *4.45 + 3R(® QW) * 497 + Q) * 5.17

(Equations 5.24 - 5.26)
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5.6.2. Entropy Analysis of a Single Control Structure with Fault Detection

In this section, the relative merit of a fault detection scheme for a single control
structure is examined. In the exercises of this thesis, it has been assumed that system
shutdown is not a possible system state. Hence, no matter what decision is made by a fault
detection scheme, the control structure will be utilized in all estimates of the controlled
parameter for the length of the mission. The only benefit of a fault detection scheme in this
situation is to alert the operator of possible failure. Three fault detection schemes of
differing performance are examined with respect to entropy and information transmission:
the perfect case of errorless detection, the worst case of complete misinformation, and the
poor or noisy case which results in no information. The failure rate of the example
reliability budget (0.000142, Figure 3.7) and the conditional error entropies of Figure 5.5
are used in producing'v‘t.he following figures. In each case, the following are derived and

compared:

1) Outcome entropy HY1*, mean conditional entropy H C1*, and rate of information

transmission RT1* =3 Y1* - H C1* for the FDI channel or decision.

2) System state entropy HS1*, mean conditional entropy of the estimation error
HE1*, and system or joint entropy HT1* = HS1* + HE1*.

A control structure with a decision scheme of maximum rate and minimum error variance is

optimal with respect to entropy (Section 5.5. and 5.5.1).

Note: * represents a suffix (e.g. pc, we, poor) used to distinguish the results for different

FDI schemes.

Note: Results for a structure without FDI is represented without a suffix.
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Perfect Fault Detection (Poo=P11=1.Pg =P1o=0

HY1* = - pr{decide structure working) log (pr{decide structure working})

- pr{decide structure failed} log (pr{decide structure failed})
HYlpe = - (R Poo+ QPo1) log (R Poo+ Q Poy) - (R P1g + Q Py1) log(R Pig + Q Py ))
HYIpc = -RlogR - QlogQ = HSI
HClpc = -R (Poolog Pgo + P1glog Pyg) - Q (P11 log Py + Py logPo1)) =0
RTlpc = H(Y) - HYIX) = HYIpc - HClpc = HS1

(Equations 5.27 - 5.29)

Worst Fault Detection (Pgg = P1;.= 0, Pp; = Pjg = 1)

HYlwc = -RlogR - QlogQ = HS1
HClwc = 0; RTlwc = HS1

(Equations 5.30 - 5.32)

Poor Fault Detection (Pgg=Pj; = Pg; = Pjg=0.5)
HYlpoor = log2 < HS1
HClpoor = log2; RTlpoor = 0

(Equations 5.33 - 5.35)

133




ingl ture with anv FD Scheme an h wn

HS1* = -R (Pgo+ P10) logR (Poo + P10)) - Q (P11 + Po1) log(Q (P11 + Po1))
HS1* = -RlogR - QlogQ = HS1
’
HE1* = RH(c!Working) - QH (eI Failed) = R*0.55 + Q*5.54 = HE1
HTI* = HT1
(Equations 5.36, 5.37)

The inclusion of any type of fault detection scheme has no effect on the mean
conditional entropy of the error because the control structure is utilized irregardless of the
decided system state.  Hence, system performance (in terms of the error variance of the
controlled parameter) is independent of the fault detection scheme. Also, perfect and worst
case fault detection cannot be distinguished from each other; nor from the case without fault
detection. However, it is indicated that a poor fault detection scheme is not acceptable due
to its zero rate of information transmission (i.e. the decision is independent from the system
and is, therefore, equally informative as flipping a coin). The conclusion from this analysis
is that no fault detection scheme should be utilized for a single control structure without
shutdown capability. Obviously, this conclusion is a bit premature without some analysis
of cost functions other than error variance (e.g. operator safety, cost of implementation).
This conclusion is quite common for any consumable process which is simply discarded or
replaced upon failure. For some applications, however, the cost of operator safety dictates
the necessity of quick detection of system failure so that the operator may respond with
protective measures. The predicted mission outcome from this analysis is that the control
structure will operate with the specified variance (62) until the MTBF. Therefore, mission
length must be less than the MTBF and would optimally be set at the time of maximum

system state entropy (i.e. the hump of Figure 5.6).
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The relative merit of a fault detection scheme for a single control structure is now
examined where system shutdown is a possible system state. System shutdoWn is initiated
immediately upon detection of a fault. Here, the benefit of a fault detection scheme is to
avoid faulty performance or product by simply ending the mission. The tabulation of mean
conditional entropy of the error function (Figure 5.5) must be expanded to cover these
additional states (Figure 5.9). Note that error entropy is zero during system shutdowh.
Decision entropies and information rates for the FDI channel remain unchanged since the

two decisions (structure working, structure failed) are unchanged.

System State p(S) Hme)
Normal Operation R Pyo 0.55
System Shutdown RPijo+ QP11 0
Missed Detection QPo; 5.54

Figure 5.9 Error Entropy For System States

Three fault detection schemes of differing performance are examined with respect to
entropy and information transmission: the perfect case of errorless detection, the worst case

of complete misinformation, and the poor or noisy case which results in no information.
Perfect Fault Detection (Poo=Pj11.=1.Pp1=P10=0)

HS1pc = - R PgglogR Poo) - R P1o + Q P11) log(R P1p + Q P11) - Q Py log(Q Po1)

HSIlpc = -RlogR - QlogQ = HSI1

HElIpc = R PgoH(e | Working) - (R P19 + Q P11) H(e | Shutdown) - Q Po; H(e | Failed)

HEIpc = R*0.55 =0
(Equations 5.38, 5.39)
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Worst Fault Detection (Ppg =P}y =0,Pp; =Pjg=1)

HSIwc = -RlogR - QlogQ = HS1
HEIwc = Q*554 = HS1
(Equations 5.40, 5.41)

Poor Fault Detection (Pgg = Pyj = Pgj =Pjg=0.5)
HSlpoor = -0.5RIlogR - 0.5QlogQ + log2 > HSI

HElpoor = 0.5* (R*0.55 + Q*5.54) = 1/2 HE1
(Equations 5.42, 5.43)

6 Mean Conditional Entropy of the Error

800 1000 1200 1400 1600
Time (Days)

Figure 5.10 Error Entropy for Structure with Shutdown
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In this example formulation, the perfect and worst case of fault detection are again
indistinguishable in their rate of information transmission and poor fault detection is found
to have zero rate of transmission. With the new set of error entropies for the additional
system state of shutdown (Figure 5.9), the perfect case of errorless fault detection is
determined to provide the smallest average conditional entropy for estimation error. The
conclusion from this analysis is that perfect fault detection is optimal for a single contrbl
structure with shutdown capability. However, this analysis also indicates that any fault
detection scheme (even worst case) is preferable to none. Initially, the error entropy for the
worst case detection scheme is actually the smallest at zero. This is because no cost is
assigned to the case of false alarm. The worst case scheme of misinformation would
immediately stop the mission due to its ignorance. The following analysis addresses this
problem. Here, the system state of false alarm is given the same weight as missed

detection in the tabulation of entropy for the error function (Figure 5.11).

System State S HnE)
Normal Operation R Poo 0.55
False Alarm R Pjo 5.54
Fault Detection QPnn 0
Missed Detection QPy 5.54

Figure 5.11 Error Entropy For System States

Worst Fault Detection: HElwc = 5.54 > #HS1 (Equation 5.44)

Poor Fault Detection: 3 Elpoor = 0.5 * (R * (0.55 + 5.54) + Q*5.54) (Equation 5.45)
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Mean Conditional Entropy of the Error
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Figure 5.12 Error Entropy for Structure with Shutdown and False Alarm Cost

Perfect fault &étection remains optimal. The only result modified is that the mean
conditional entropy of the error is increased for the poor and worst cases of fault detection
(Equations 5.54, 5.55). Initially, a structure with a fault detection scheme can be
considered less optimal than a structure without FDI. As the mission progresses, a fault
detection scheme becomes desirable. The greater the decision error for the detection
scheme, the further in the mission for the scheme to become useful. The perfect detection
scheme would be utilized immediately. The worst case scheme of misinformation is never
utilized. The poor or noisy fault detection scheme is only acceptable after the probability of
a failure is already high. This mimics the threshold variation which occurs with a fault
detection scheme based on the Bayes criterion. The threshold is set very high initially
(when the reliability is very high) such that false alarms are minimized. As the mission
progresses, the threshold is reduced to zero in order to sensitize the test to fault
occurrences. Therefore, this cost analysis allows determination of whether a fault detection

scheme is acceptable and, if so, when during the mission it should be utilized.
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5.6.3. Entropy Analysis of Dual Redundant Structures

In this section, the relative merit of a fault detection scheme for redundant control
structures is examined. In the exercises of this thesis, it has been assumed that system
shutdown is not a possible system state. Hencé, no matter what decision branch is
followed by a fault detection scheme, at least one control structure will be utilized in the
estimates of the controlled parameter for the length of the mission. The benefit of a fault
detection scheme in this situation is to alert the operator and to isolate any possible failure
so that continuous operation can be maintained with the working controller. Many fault
detection schemes of differing performance are examined with respect to entropy and
information transmission. The failure rate of the example reliability budget (0.000142,
Figure 3.7) and the cqnditional error entropies of Figure 5.5 are used in producing the

following figures. In each case, the following are derived and compared:

1) Outcome entropy H Y#*, mean conditional entropy HC#*, and rate of information

transmission RT#* = HY#* - H C#* for the FDI channel or decision.

2) System state entropy HS#*, mean conditional entropy of the estimation error

HE#*, and system or joint entropy 3 #* = HS#* + HE#*.
A control structure with a decision scheme of maximum rate and minimum error variance is

optimal with respect to entropy (Section 5.5. and 5.5.1).

Note: * represents a suffix (e.g. pc, we, poor) used to distinguish the results for different
FDI schemes. Results for a redundant structure without FDI is represented without

this suffix.

Note: # represents a numerical suffix (e.g. 1, 2, 3) used to distinguish the results for a

different number N of redundant structures.
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First, a dual structure without simplex FDI schemes (Figure 4.18) is examined for
four cases of duplex fault detection: the optimized case of the Bayes criterion, the static
threshold case of the Neyman-Pearson criterion, the worst case of complete
misinformation, and the poor or noisy case which results in no information. Only two
decisions or outcomes are possible (both working, dual or single fault) because no simplex
FDI is implemented. A failure SNR of five (used in previous exercises) is assumed. The
conditional probability of a hidden dual fault or common bias given that a dual fault has
occurred is represented here as Ppg. Also, refer to Equations 4.20 - 4.24 for the system

state probabilities.

HY2* = :pr{decide both working} log (pr{decide both working})
- pr{decide dual or single fault} log (pr{decide dual or single fault})

HY2* = - (R2Py+2R QPy; +Q2Ppr Pyo + Q2 (1 - PpF) Por)
* log (R2 Pgo + 2 R Q Po;1 + Q2 Ppr Poo + Q2 (1 - Ppp) Po1)

-(R2P1p+2R QP11+ Q2Ppr P10+ Q2 (1 - Ppp) P11)
* Jog (R2P19+2 R QPy1 + Q2 Ppr P1o+ Q2 (1 - Ppp) P11)

HC2* = - R2 (P log Poo + P1olog P1o) - 2 R Q (P11 log P13 + Po1 log Po1)
- Q2 (Ppr Poo log Ppr Poo + Ppr P10 log Ppr P1o + (1 - Ppp) P11 log ((1 - PpF) P11)
+ (1 - Ppp) Po1 log ((1 - PpF) Po1))

HS2* = - Pgj log Ps; - Pss log Ps - Ps3 log Ps3 - Ps4 log Ps4 - Pss log Pss

HE2* = Pg; H(eIS1) + Psy H(e 1S2) + Ps3 H(e IS3) + Ps4 H(e 1S4) + Ps5s H(e IS5)

HE2* = Pg1 *0.2 +Psy * 4.85 + Pg3 * 5.37 + Pg4 * 0.55 + Ps5 * 5.54

(Equations 5.46 - 5.49)
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Perfect Duplex Fault Detection (Pgg= P11 =1, Pg1 =Pjo=Ppr=0)

HY2pc = -R2logR?2 - 2RQ+Q2)log2RQ+Q?)
HC2pc = 0; RT2pc = HY2pc

-

#HS2pc = -R2logR2 - RQlogRQ - RQ+Q2)log R Q+Q2)

HE2pc = R2*%0.2 + RQ*0.55 + RQ+Q2) *554

(Equations 5.50 - 5.54)

Worst Duplex Fault Detection (Pgg=Pj;=Ppr=0.Po1=Pjo=1

HY2we = 2RQ+Q2)log 2R Q+Q2) - R2log R2
| HC2wec = 0; RT2wc = HY2wc
HS2we = -2RQlog QR Q) - Q2log Q2 -R21og R?

HE2wc = 2RQ*4.85 + Q2*537 + R2*0.55

(Equations 5.55 - 5.59)

Poor Fault Detection (Pgg=P11.= Pg1 =P19=0.5, PDF=0)

HY2poor = - (R2+2RQ+Q2) *log (0.5* R2+2RQ+Q2) = log2
HC2poor = log2; RT2poor = 0

3{S2poor = - 0.5 * R21og(0.5 * R2) - R Qlog (R Q) - 0.5 * Q210g(0.5 * Q2)
-0.5* (R2+R Q) log(0.5* (R2+R Q) - 0.5 * (Q% + R Q) log(0.5 * (@2 +R Q))
HE2poor = R2*0.1 +RQ*4.85+Q2*2.685+ (R2+RQ) *0.275 +(Q2+R Q) *2.77

(Equations 5.60 - 5.64)
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6 Mean Conditional Entropy of the Error
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Figures 5.16, 5.17
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Results
Outcome Information poor=log2 > np > bayes > pc=wc
Missing Information poor=log2 > np > bayes > pc=wc=0
= Transmission Rate pc=wc > bayes > np > poor =0
=» Error Entropy WC > poor > pc = bayes =np
System Entropy poor > wc > np > pc = bayes

Perfect and worst case fault detection are found to provide the highest rate of
information transmission, while poor or noisy fault detection has a zero transmission rate.
The Bayes criterion allows a slightly higher information rate than the Neyman-Pearson (np)
criterion, both of which are near optimal. Note the improvement of the Bayes criterion at
reducing the amount/c')f lost or missing information due to noise or error (H C2bayes <
HC2np). In comparison with a single structure without shutdown, duplex fault detection
has a higher transmission rate initially due to the additional outcome information and a
lower rate beyond the MTBF due to the_inability to distinguish between dual and single

failures. Of course, the duplex scheme can incorporate these simplex schemes in order to

improve its fault tolerance (see below).

Perfect, Bayes, and Neyman-Pearson fault detection provide the lowest mean
conditional error entropy over the length of the mission. The mean error entropy for these
schemes is less than or equal to the mean error entropy of a single structure H{Elpc <
HEIL, Figure 5.16). Initially, they are improved due to the reduced error variance from the
estimation average. The worst case scheme provides the highest mean error entropy and is
approximately equal to the mean error entropy of the dual structure without fault detection
(HE2wc = HE2, Figure 5.16). Similar results hold for the system or joint entropy.
System entropy for the Bayes criterion, however, is lower than that for the Neyman-

Pearson criterion.
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Therefore, a dual redundant structure with an errorless duplex test allows a higher
rate of information and a lower mean error entropy over a single control structure (with or
without fault detection) for short missions which end before the MTBFE. Bayes detection is
preferred over Neyman-Pearson. A dual structure without shutdown can achieve the same
performance with or without worst case detection, but must strive for perfect case detection

to improve upon the performance of a single structure.

A dual structure with two levels of fault detection (i.e. duplex and simplex FDI) is
examined for three cases: the perfect case of errorless detection at both levels, the worst
case of complete misinformation at both levels, and the poor or noisy case which results in
no information. Three decisions or outcomes are possible (both working, single fault, and
dual fault). Again, system shutdown is not considered as a possible system state.
Additionally, one level must be given precedence over the other in order to resolve conflicts
between the two levels of fault detection. The above results for a dual structure with only
duplex fault detection can be considered comparable with the case of full FDI where duplex
detection is given precedence and simplex detection is poor or noisy such that it provides
no additional information. Simplex detection upon either single controller within the dual
structure is independent from duplex detection upon the pair of controllers and simplex
detection upon the other control structure. The conditional probabilities for the simplex
detection scheme upon either single controller are represented as Psg# (e.g. Ps10 = the
probability of deciding a working structure is failed). However, simplex detection applied
to the second control structure is dependent upon the results of the simplex detection
applied to the first control structure and the duplex detection applied to the pair of control
structures. The conditional probabilities for the simplex detection scheme applied to the
second controller are represented as Ps#)(#)# (€.g. Ps(10)(10)0 = the probability of
deciding the second working controller is failed when the first working controller and the

dual structure are considered failed). A property of mutually exclusive and exhaustive
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events is that the sum of their probabilities must equal unity (e.g. Ps(10)10)0 + Ps00)(10)0 =
Psio + Pspo = 1). In the ideal detection schemes to be examined (perfect, worst, and
poor), independence is assumed between duplex and simplex tests and, therefore,
Ps(#)a# = Psys. The failure rate of the example reliability budget (0.000142, Figure
3.7) and the conditional error entropies of Figure 5.5 are used in producing the following
figures. A control structure with a decision scheme of maximum rate and minimum error
variance is optimal with respect to entropy (Section 5.5. and 5.5.1). In each case, the

following are derived and compared:

1) Outcome entropy HY2F#*, mean conditional entropy H C2F#*, and rate of
information transmission RT2F#* = H Y2F#* - H C2F#* for the FDI channel or

decision.

2) System state entropy HS2F#*, mean conditional entropy of the estimation error

HE2F#*, and system or joint entropy H 2F#* = HS2F#* + HE2F#*.

Note: * represents a suffix (e.g. pc, we, poor) used to distinguish the results for different
FDI schemes. Results for a redundant structure without FDI is represented without
this suffix.

Note: # represents the level of fault detection given precedence for conflict resolution (e.g.
2 indicates duplex detection has precedence, while 1 indicates simplex detection)

Note: The suffix F represents a redundant structure with full FDI at all levels.

HY2F#* = - pr{decide both working} log (pr{decide both working})
- pr{decide single fault} log (pr{decide single fault})
- pr{decide dual fault} log (pr{decide dual fault})
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HY2F2* = - (R2Pgy+ 2R QPgy1 + Q2Ppr Py + Q2 (1 - Ppr) Poy)
* log (R2 Py + 2 R Q Po1 + Q2 Ppr Poo + Q2 (1 - Ppp) Po1)

- B2 P10 (1 - Ps10Ps10101) + 2 R Q P11 (1 - Ps1o Ps11101)
+(Q2Ppr P1o+ Q2 (1 - Ppp) P11) (1 - Ps11 Ps11111))
* log (R2 P1g (1 - Ps10Ps10101) + 2 R Q P11 (1 - Ps10 Ps11101)
+ (Q2 Ppr P1o+ Q2 (1 - Ppp) P11) (1 - Ps11 Ps11111))

- R2 P10 Ps10Ps10101 +2 R QP11 Ps10 Ps11101
+ (Q2 Ppr P1o+ Q2 (1 - Ppp) P11) Ps11 Ps11111)

* log (R2 P19 Ps10 Ps10101 +2 R QP11 Ps10Ps11101
+ (Q2 Ppr P10 + Q% (1 - Ppp) P11) Ps11 Ps11111)

(Equation 5.65)

@ HY2F1* = - (R2 PooPsoo Pso0ooo + 2 R Q Po1 Psoo Pso1000
| + (Q2 Ppr Poo + Q2 (1 - PpF) Po1) Pso1 Ps01010)
* log (R2 Poo Psoo Pspoo0o + 2 R Q Por Psgo Pso1000
+ (Q2 Ppr Poo + Q2 (1 - Ppp) Po1) Pso1 Ps01010)

- (R2 (P10 (Psoo + Ps10 Ps00101) + Poo (Ps00 Ps10000 + Ps10 Ps00100))
+2 R Q (P11 (Psoo + Ps10 Pso1101) + Po1 (Psoo Ps11000 + Ps10 Pso1100))

+ (Q2 Ppg P10 + Q2 (1 - Ppp) P11) (Pso1 + Ps11 Pso1111))
+ (Q2 Ppr Poo + Q2 (1 - PpE) Po1) (Pso1 Ps11010 + Ps11 Ps01110))
* log (R? (P10 (Psoo + Ps10 Ps00101) + Poo (Psoo Ps10000 + Ps10 Ps00100))
+2 R Q (P11 (Psoo + Ps10 Pso1101) + Pot (Psoo Ps11000 + Ps10 Ps01100))

+(Q2 Ppr P19 + Q2 (1 - Ppp) P11) (Pso1 + Ps11 Pso1111))
+ (Q2 Ppr Poo + Q2 (1 - Ppr) Po1) (Pso1 Ps11010 + Ps11 Ps01110))

- (R2 (P10 Ps10 Ps10101 + Poo Ps10 Ps10100) + 2 R Q (P11 Ps10 Ps11101 + Po1 Ps10 Ps11100)
+ (Q2 Ppr P1g + Q2 (1 - Ppp) P11) Ps11 Ps11111 + (Q2 Ppr Poo + Q2 (1 - Ppr) Po1) Ps11 Ps11110)

* log (R2 (P10 Ps10 Ps10101 + Poo Ps10 Ps10100) + 2 R Q (P11 Ps10 Ps11101 + Po1 Ps10 Ps11100)
+ (Q2 Ppg P1g + Q2 (1 - Ppp) P11) Ps11 Psi1111 + (Q2 Ppr Poo + Q2 (1 - Ppp) Po1) Ps11 Ps11110)

(Equation 5.66)
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HC2F2* = - R2 (Pgglog Poo + P10 (1 - Ps10 Ps10101) log (P10 (1 - Ps10Ps10101))
+ P10 Ps10 Ps10101 log(P10 Ps10 Ps10101))

- 2R Q (Pop log Po1 + P11 (1 - Ps10 Ps11101) log(P11 (1 - Ps10Ps11101))
+ P11 Ps10 Ps11101 log (P11 Ps10 Ps11101))

- Q2 (Ppr Poo log Ppr Poo + (1 - PpE) Po1 log ((1 - Ppr) Por)
+ Ppr P10 (1 - Ps11 Ps11111) log(PpF P10 (1 - Ps11 Ps11111))
+ (1 - Ppfp) P11 (1 - Ps11 Ps11111) log((1 - Ppp) P13 (1 - Ps11 Ps11111))
+ Ppr P10 Ps11 Ps11111 log (Ppr P1g Ps11 Ps11111)
+ (1-Ppp) P11 Ps11 Ps11111 log ((1 - PpF) P11 Ps11 Ps11111))

(Equation 5.67)

HC2F1* = - R2 (Poo Psoo Psoo00o log Poo Psoo Ps00000
+ (P10 (Pso0 + Ps10 Psoo101) + Poo (Psoo Ps10000 + Ps10 Ps00100))
* log (P10 (Ps00 + Ps10 Ps00101) + Poo (Psoo Ps10000 + Ps10 Ps00100))
+ (P10 Ps10 Ps10101 + Poo Ps10 Ps10100) log(P10 Ps10 Ps10101 + Poo Ps10 Ps10100))

- 2R Q (Po1 Psoo Pso1000 log Po1 Psoo Pso1000
+ (P11 (Psoo + Ps10 Pso1101) + Po1 (Psoo Ps11000 + Ps10 Pso1100))
* Jog (P11 (Psoo0 + Ps10 Pso1101) + Po1 (Psoo Ps11000 + Ps10 Pso1100))
+ (P11 Ps10 Ps11101 + Po1 Ps10 Ps11100) log (P11 Ps10 Ps11101 + Po1 Ps10 Ps11100))

- Q2 ((Ppr Poo + (1 - PpR) Po1) Pso1 Pso1010
* log((PpE Poo + (1 - PpF) Pp1) Pso1 Ps01010)
+ ((Ppr P10+ (1 - PpF) P11) * (Pso1 + Ps11 Pso1111)
+ (Ppr Poo + (1 - Ppr) Po1) * (Pso1 Ps11010 + Ps11 Pso01110))
*Jog((Ppr P10 + (1 - Ppp) P11) * (Pso1 + Ps11 Pso1111)
+ (Ppr Poo + (1 - Ppp) Po1) * (Pso1 Ps11010 + Ps11 Pso1110))
+ ((Ppr P10+ (1 - Ppp) P11) * Ps11 Ps11111
+ (Ppr Poo + (1 - Ppp) Po1) * Ps11 Ps11110)
* log((PpF P10 + (1 - Ppp) P11) * Ps11 Ps11111
+ (Ppr Poo + (1 - Ppp) Po1) * Ps11 Ps11110))

(Equation 5.68)
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HS2F2* = - Psj log Ps; - Psz log Ps2 - Ps3 log Ps3 - Ps4 log Ps4 - Pss log Pss
and
HE2F2* = PsiH(eIS1) + Ps2 H(e 1S2) + Ps3 H(e IS3) + Ps4 H(e I1S4) + Ps5 H(e IS5)
${E2F2* = Pg; * 0.2 + Pgp * 4.85 + Pg3 * 5.37 + P4 * 0.55 + Pss * 5.54

where

Ps; = R2Pyy; Ps2 = 2RQPq;; Ps3 = Q2 PprPoo+ Q2 (1-PpF) Po1;
Pss = R2Pjo+2 R QP11 (Psoo Ps11001 + Psoo Pso1001 / 2 + Ps10Ps11101/2) 5

Pgs = (Q2- Ps3) + 2 R Q P11 (Ps10 Pso1101 + Psoo Ps01001 / 2 + Ps10 Ps11101/ 2)

(Equations 5.69 - 5.75)

HS2F1* = - Pgjlog Ps) - Ps2 log Ps2 - Ps3 log Ps3 - Ps4 log Ps4 - Pss log Pss
and
HE2F1* = Pg;H(eIS1) + Psy H(e IS2) + Pg3 H(e 1S3) + Pgq H(e 1S4) + Ps5 H(e 1S5)
HE2F1* = Pg;* 0.2 + Pgy * 4.85 + Pg3 * 5.37 + Pg4 * 0.55 + Pg5 * 5.54

where

Ps1 = R2 Pgy Psoo Psooooo; Ps2 = 2 R Q Por Psoo Pso1000;
Ps3 = Q2 (Ppr Poo + (1 - PpE) Po1) Pso1 Pso1010;

(R2 - Ps1) + 2 R Q P11 (Psoo Ps11001 + Psoo Pso1001 / 2 + Ps10 Ps11101/ 2)
+ 2 R Q Po1 (Psoo Ps11000 + Ps10Ps11100/2) ;

i

Ps4

Pss = (Q2- Ps3) + 2 R QP11 (Ps10 Pso1101 + Psoo Pso1001 / 2 + Ps10 Ps11101 / 2)
+2 R QPo1 (Ps10 Pso1100 + Ps10Ps11100/2) ;

(Equations 5.76 - 5.82)
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P Faul i 11 Level

HY2F2pc = HY2FIpc = -R2logR2 - 2RQlog2RQ - Q2log Q2 = HS2

HC2F2pc = HC2F1pc = 0; RT2F*pc = HS2 2 RT2pc

HS2F2pc = H.S2FIpc = -R2logR2 - 2R Qlog2R Q - Q2log Q2 = HS2

HE2F2pc = HE2FIpc = R2*0.2 + 2RQ*0.55 + Q2*5.54 < HE2pc

(Equations 5.83 - 5.87)

Worst Fault Detection at All Levels

HY2F2we = (2RQ+Q2)log 2R Q +Q2)-R2log R = HY2we
HC2FR2we = 0; RT2F2wc = RT2wc
HY2F1lwe = -R21ogR2 - 2RQIlog2RQ - Q2log Q2 = HS2

HC2F1lwec = 0; RT2Flwc = HS2 = RT2F*pc

HS2F2we = HS2F1lwe = -R2logR2 - 2RQlog2R Q - Q2log Q2 = HS2
HE2F2we = R2*0.55 + 2RQ*4.85 + Q2*537 = HE2wc

HE2F1wec = R2*0.55 + 2RQ*5.54 + Q2*5.37 > HE2F2wc

" (Equations 5.88 - 5.96)
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r Faul ion at All Level

HY2F2poor = HC2F2poor = - 0.5 *log (0.5) - 0.375 *log(0.375) - 0.125 * log(0.125)
HY2F1poor = HC2Flpoor = - 0.125 *log (0.125) - 0.625 *10g(0.625) - 0.25 * 1og(0.25)

HC2F2poor = 0.974 > HC2Flpoor = 0.900; RT2F*poor = 0
HE2F2poor = R2*0.1 + RQ*4.85 + Q2 *2.685
+R2+RQ)*0.275 + (Q2+R Q) *2.77 = HE2poor = HE1

HE2F1poor = R2*0.025 + RQ*1.213 + Q2*0.671
+(R2+RQ)*0.481 + (Q2+R Q) *4.85 =~ HE2poor

(Equations 5.97 - 5.102)

Perfect Duplex and Poor Simplex Fault Detection
HY2F2pc,poor = -R2logR2 - (2R Q+Q2) *(0.75) log (2 R Q + Q2) * (0.75))
- 2R Q+Q?) *(0.25) log (2R Q + Q2) * (0.25))

HC2F2pc,poor = - QRQ+ Q2) * (0.75 *log (0.75) + 0.25 *1og(0.25))
$ Y2F1pc,poor = - R2 * 0.5 * (log (R2 * 0.5) + log(R2 * 0.25))
- QR Q+Q2) *(0.75) log (2R Q + Q2) * (0.75))
- 2R Q+Q2) *(0.25) log (2R Q + Q2) * (0.25))

$H C2F1pc,poor = - R2 * 0.5 * (log (0.5) + 1log(0.25))
- 2R Q+Q?) *(0.75 *log (0.75) + 0.25 *log(0.25))

HC2F2pc,poor > HC2F1pc,poor ; RT2F*pc,poor = RT2pc = HY2pc

HE2F2pc,poor = R2*0.2 + RQ*0.55 + (Q2+R Q) *5.54 = HE2pc

HE2F1pc,poor = R2*0.05 + (R2*0.75+R Q) *0.55 + (Q2+R Q) *5.54 = HE1 =~ HE2pc

(Equations 5.103 - 5.110)

151.



Poor Duplex and Perfi implex Faul ion
HY2F2poor,pc = -0.510g05 - QRQ+ R2) * (0.5) * log (R Q +R2) * (0.5))
- Q2*(0.5) * log (Q2 * 0.5)
HC2F2poor,pc = -log0.5 = log2

RT2F2poor,pc = - (1 - Q2) * (0.5) *log (1- Q%) - Q2* (0.5) *log Q2 < 0.5 *log2

$HY2F1poor,pc = - R2* 0.5 * log (R2 * 0.5)
- @2RQ+R2*0.5) *log 2R Q +R2*0.5) - Q2log Q2

H C2F1poor,pc = - R21og 0.5 < HC2F2poor,pc

RT2F1poor,pc = -R2*0.5 *logR2- 2RQ+R2*0.5) *log 2R Q+R2*0.5) - Q%log Q2

HE2F2poor,pc = R2*0.1 + RQ*4.85 + Q2 *2.685
+ RZ+2RQ)*0.275 + Q2*2.77

HE2F1poor,pc = R2*0.1 + (R2*0.5+2R Q) *0.55 + Q2*5.54 =~ HE2F*pc

(Equations 5.111 - 5.118)
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12 Information Rate for the FDI Scheme
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Duplex FDI alone provides the same results for a dual structure as full FDI which
incorporates a poor simplex test (i.e. RT2* = RT2F2* and HE2* = HE2F2*). These
results are improved upon by any full FDI scheme with a better simplex test. Hence, a dual

structure with full FDI allows equivalent or better performance than with duplex FDI alone.

In all cases of importance, full FDI with simplex precedence (RT2F1*, HE2F1*)
for conflict resolution provides better performance than the case of duplex precedence
(RT2F2*, HE2F2*). As observed in Figure 5.18, duplex precedence can be costly in
terms of information transfer (e.g. RT2F2poor,pc < RT2F1poor,pc). Even in cases of
equivalent information rates (e.g. Equations 5.99, 5.107, and 5.115), duplex precedence
exhibits a larger loss of information due to decision error HC2F2* >H C2F1*). In Figure
3.19, it is observed tiiét duplex precedence allows a greater error variance than simplex

. precedence (HE2F2* > HE2F1*). Hence, simplex precedence must be utilized by a dual

structure with full FDI and without shutdown capability.

The perfect case of errorless detection for a dual structure with full FDI exhibits a
dramatic improvement over single structure performance in terms of reduced error variance
due to the second-order effect of its fault tolerance. Single structure performance is defined
by HEI irregardless of any simplex tests. Error variance for a perfect dual structure is
initially lower due to the averaging of two working controllers and is only gradually
increased upon switching to the second stage of a single working controller (Figure 5. 19).
Perfect and worst case fault detection for a dual structure with full FDI are found to provide
the highest rate of information transmission, while poor or noisy fault detection has a zero
transmission rate (Figure 5.18). The general improvement of a dual structure over the
performance of a single structure is dictated by the quality of the simplex test (Figure 5.20).
This is because the cost of missed detection can be offset by giving precedence to the

. simplex test and the cost of a false alarm is small for a structure without shutdown
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capability. Hence, a dual structure without shutdown capability can achieve slightly better
performance than a single structure with a poor simplex test and significantly better

performance with a fair or better simplex test.

Full Dyal Structure

Duplex Test Simplex Test Performance Comparison
any worst HE1 < HE2F#*poor < HE2F#*wc
any poor HE1 < HE2F#*poor
poor or better fair HE2F#*fair < HE1
poor or better - perfect HE2F#*pc < HE2F#*fair < HE1
Figure 5.20 Comparison of Full Dual Structure and Single Structure

The relative merit of a fault detection scheme for a dual control structure is now
examined where system shutdown is a possible system state. Here, the system state of
false alarm is given the same weight as missed detection in the tabulation of entropy for the
error function (as in Figure 5.11). System shutdown is initiated immediately upon
detection of a fault which cannot be isolated. Here, the benefit of a fault detection scheme

is to avoid faulty performance or product by simply ending the mission.

155



HE2F2* = Pgs1H(eIS1) + P52 H(e 1S2) + Ps3 H(e 1S3) + Ps4 H(e 1S4) + Ps5s H(e IS5)
+ Pgs H(e IFalse Shutdown) + Psp H.(€ IShutdown)

HE2F2* = Pg; *0.2 + Ps2 * 4.85 + Pg3 * 5.37 + Pg4 * 0.55 + (Ps5 + Pgs) * 5.54

where

Ps1 = R2Pgo; Ps2 = 2RQPog;; Ps3 = Q2 PprPoo+ Q2 (1 - Ppp) Pop 5
Ps4 = R2Pjo (1 - Ps10Ps10101) + 2 R QP11 (Psoo Ps11001 + Psoo Pso1001/2) 5
Prs = R2PjoPsi0Ps10101 + 2 R QP11 Ps10Ps11101 3

Pss = 2R QPi1 (Ps10Pso1101 + Psoo Pso1001 / 2)
+ Q2 (Ppr P10 + (1 - Ppp) P11) (Pso1 + Ps11 Pso1111) ;

Psp = Q? (Ppr P10+ (1 - Ppp) P11) Ps11 Ps11111
(Equations 5.119 - 5.126)

HE2F1* = Psi H(eS1) + Pgy H(e 1S2) + Ps3 H(e IS3) + Ps4 H(e 1S4) + Ps5s H(e IS5)
+ Pgs H (e IFalse Shutdown) + Psp H.(€ IShutdown)

HE2F1* = Pg * 0.2 + Pg * 4.85 + Pg3 * 5.37 + Pgg * 0.55 + (Ps5 + Pgs) * 5.54

where

Ps1 = R2 Py Psoo Ps00000: Ps2 = 2 R Q Po1 Psoo Ps01000 5
Ps3 = Q2 (Ppr Pgo + (1 - PpE) Po1) Pso1 Pso1010 5

Pss4 = R2 (P10 (Psoo + Ps10 Pso0101) + Poo (Psoo Ps10000 + Ps10 Ps00100))
+2 R QP11 (Psoo Ps11001 + Psoo Pso1001/2) + 2 R Q Po1 Psoo Ps11000 ;

Prs = R2 (Pgo Ps10 Ps10100 + P10 Ps10 Ps10101)
+ 2R Q (Po1 Ps10Ps11100 + P11 Ps10 Ps11101) 5

Pss = (Q2 - Ps3- Psp) + 2 R Q P11 (Ps10 Pso1101 + Psoo Pso1001 / 2) +2 R Q Po1 Ps10 Ps01100 5

Psp = Q2 (Ppr P1o + (1 - Ppr) P11) Ps11 Psi1111 + Q2 (Ppr Poo + (1 - Ppr) Po1) Ps11 Ps11110

(Equations 5.127 - 5.134)
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Perfect Detection: HE2F*pc = R2*02 + 2RQ*0.55  (Equations 5.135)

Worst Fault Detection at All Levels
HE2F2we = R2*554 + 2RQ*4.85 + Q2*5.37 < HElwc

HE2FIwe = (R2+ 2RQ)*5.54 + Q2*537 < HElwc
(Equations 5.136, 5.137)

Poor Fault Detection at All Level

HE2F2poor = R2*0.1 + RQ*4.85 + Q2*2.685
+R2+RQ)*0.206 + (R2+5RQ+3Q2) *0.693 < HEIlpoor

#{E2F1poor = R2*0.025 + RQ* 1213 + Q2 *0.671
+(R2+RQ)*0.344 + QR2+9RQ+5Q?) *0.693 = HE2F2poor

(Equations 5.138, 5.139)

Perfect Duplex and Poor Simplex Fault Detection
HE2F2pc,poor = R2*02 + RQ*0413 + 5SRQ+3 Q2) * 1.39

HE2F1pc,poor = R2*0.05 + 2R2+3RQ) *0.138 + (RZ+5RQ+3 Q2)*1.39
(Equations 5.140, 5.141)

Poor Duplex and Perfect Simplex Fault Detection
HE2F2poor,pc = R2*0.1 + RQ*485 + Q2%2.685 + (R2+2R Q) *0.275

HE2F1Ipoor,pc = R2*0.1 + (R2*0.5+2R Q) *0.55 = HE2F*pc

(Equations 5.142, 5.143)
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Figure 5.21 Error Entropy for Dual Structure with Shutdown
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Mean Conditional Entropy of the Error
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Figures 5.22 Mission Stages for Different FDI Schemes

Mean Conditional Entropy of the Error

pp—— L] it ke tesedh e iy

L pauaeT T T HE2F2pc,poor ]|

HE2NS for No Simplex Isolation

0 200 400 600 800 1000 1200 1400 1600
Time (Days)
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Results indicate the need to switch the FDI decision scheme for different stages of
the mission in all but the most perfect case. A dual structure with full FDI can achieve
better average performance with duplex precedence (assume both working unless
difference test fails) in early stages of the mission where R?2 = pr{Both Working}
dominates and with simplex precedence (assume dual or single fault unless all tests pass) in
the later stages of the mission where Q2 = pr{Both Failed} dominates. A third decision
scheme with no precedence (assume single fault unless all tests agree otherwise) suggests a
middle stage for the full FDI scheme when 2RQ = pr{Single Fault} dominates. It is
concluded that precedence for the full FDI scheme should agree with the most probable
state for the given r?fission time (i.e. assume the dominant prior when designing the
decision scheme). Figure 5.22 illustrates this concept of a staged FDI scheme for the case
of poor fault detection at all levels. A fourth decision scheme, where no FDI is employed

and shutdown is always decided, is suggested by Figure 5.22 as a better alternative for the

third stage of a poor detection scheme due to its lower error entropy (HE2SD).

If either level of tests (duplex or simplex) should dominate the other in quality, then
the switching times for the mission stages must be adjusted accordingly. For example, as
the quality of the duplex test approaches the perfect case, switching times will be pushed
further and further out until finally duplex precedence (i.e. HE2F2pc,poor) will be utilized
throughout the mission. The same holds for the simplex test (i.e. HE2F1poor,pc has a

lower error variance than HE2F2poor,pc over the entire mission).
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The perfect case of errorless detection for a dual structure with full FDI exhibits a
dramatic improvement over single structure performance in terms of a longer average
mission before shutdown. Also, error variance for any dual structure is initially lower than
for a single structure due to the averaging of two working controllers. The general
improvement of a dual structure over the performance of a single structure is dictated by the
quality of both tests. For example, a dual structure with poor FDI at both levels reaches an
error variance much higher than that for a single structure (Figure 5.22). This difference
can be offset by deciding shutdown for the third stage of the decision scheme (HE2SD).
The increased error variance during the second stage cannot be further reduced due to the
inability to isolate the first failure by the poor simplex test. However, a dual structure with
a poor simplex test and a perfect duplex test can achieve lower error entropy than a single
structure with the same poor simplex test over the entire mission (Figure 5.23,
HE2F2pc,poor & HENS < HEl & HE1poor). This is made possible by a second and
final decision stage where only the perfect duplex test is utilized and shutdown is initiated
upon a failed difference test GLE2NS). Good results can also be obtained with a perfect
simplex test and a poor duplex test (i.e. HE2F1poor,pc < 3 Elpc). Hence, full FDI for a
dual structure with shutdown capability must incorporate a near-perfect test at one or both

levels in order to improve upon single structure performance.
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5.6.4. Entropy Analysis of Triple Redundant Structures

In this section, the relative merit of a fault detection scheme for a triple redundant
control structure is examined. Results follow those of the previous section. In the
exercises of this thesis, it has been assumed that system shutdown is not a possible system
state. Hence, no matter what decision branch is followed by a fault detection scheme, at
least one control structure will be utilized in the estimates of the controlled parameter for the
length of the mission. The benefit of a fault detection scheme in this situation is to alert the
operator and to isolate any possible failure so that continuous operation can be maintained
with the working controller. Two fault detection schemes of differing performance are
examined with respect to entropy and information transmission: the Triple Redundant
Structure (TRS) detailed in Chapter 4 with perfect triplex detection and poor simplex
detection, and the perféct case of errorless detection at all levels. The failure rate of the
example reliability budget (0.000142, Figure 3.7) and the conditional error entropies of
Figure 5.5 are used in producing the following figures. In each case, the following are

derived and compared:

1) Outcome entropy H Y3*, mean conditional entropy HC3*, and rate of information

transmission RT3* = HY3* - H C3* for the FDI channel or decision.

2) System state entropy HS3*, mean conditional entropy of the estimation error

HE3*, and system or joint entropy H 3* = HS3* + HE3*.

A control structure with a decision scheme of maximum rate and minimum error variance is
optimal with respect to entropy (Section 5.5. and 5.5.1). The estimation error entropy for
these full FDI schemes will be compared with those of two techniques for passive

redundancy: majority voting and fault masking.
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Note: * represents a suffix (e.g. pc, wc, poor) used to distinguish the results for different
FDI schemes. Results for a redundant structure with a passive technique will be

distinguished here (e.g. V for majority voting and M for fault masking).

Perfect Fault Detection at All L evels

RT3pc = -R3logR3 - 3QR21og3QR2 - 3RQ2log3RQ2 - Q3log Q3 = HS3

HE3pc = 3QR2*02 + 3RQ2*0.55 + Q3*5.54 < HE2F*pc < HEI
(Equations 5.144, 5.145)

TRS (Perfect Triplex and Duplex and Poor Simplex) Fault Detection

HY3pc,poor = - R3logR3 - 3QR2log3QR2
- 3R Q2 + Q3) *(0.75) log (BR Q2 + Q3) * (0.75))
- 3R Q2 + Q3) *(0.25)log (BR Q2 + Q3) * (0.25))
HC3pe,poor = - (3R Q2 +Q3) * (0.75 *log (0.75) + 0.25 *log(0.25))

RT3pc,poor = -R3logR3 - 3QR21og3QR2 - BRQ2+ Q3 1og BRQ2+Q?)

HE3pc,poor = 3QR2*0.2 + RQ2*0.55 + 2R Q2+ Q3) *5.54
(Equations 5.146 - 5.149)

Passive Redundancy Techniques: Fault Masking and Majority-Voting

HE3M = R3+3QR2Z+RQ2)*0.55 + 2R Q2+ Q3)*5.54 > HE3pc,poor

HE3V = 3QR2%445 + 3RQ2*497 + Q3*5.17
(Equations 5.150, 5.151)
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Perfect and worst case fault detection for a triple structure with full FDI are found to
provide the highest rate of information transmission, while poor or noisy fault detection has
a zero transmission rate (Figure 5.24). The perfect case of errorless detection for a triple
structure with full FDI exhibits a dramatic improvement over single and dual structure
performance in terms of reduced error variance due to the third-order effect of its fault
tolerance. Single structure performance is defined by HEI1 irregardless of any simplex
tests. Error variance for any redundant structure is initially lower due to the averaging of
working controllers and is only gradually increased upon switching to successive stages of
reduced operation (Figure 5.25). The relative improvement of the dual structure over the
single structure is dependent upon the quality of the simplex test. However, a triple
redundant structure of near-perfect triplex and duplex detection and poor simplex detection
shows immediate improvement over single structure performance. It also found to provide
lower error entropy than both of the examined passive redundancy techniques, although it
does approach the performance of a fault masking scheme as the mission progresses. Fault
masking shows similar promise while majority-voting is easily observed as undesirable.
Hence, a triple structure without shutdown capability can achieve significantly better

performance than a single or dual structure.

The relative merit of a fault detection scheme for a triple control structure is now
examined where system shutdown is a possible system state. Here, the system state of
false alarm is given the same weight as missed detection in the tabulation of entropy for the
error function (as in Figure 5.11). Here, the benefit of a fault detection scheme is to avoid

faulty performance or product by simply ending the mission.
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HE3pc = 3QR2*0.2 + 3RQ2*0.55 < HE2F*pc < HEI

Perfect Fault Detection at All Levels

TRS (Perfect Triplex and Duplex and Poor Simplex) Fault Detection
HE3pc,poor = 3Q R2*02 + RQ2*0413 + OR Q2+3Q3)*1.39
(Equation 5.153)

Perfect Triplex and Duplex and No Simplex Fault Detection
HE3NS = 3QR2#%0.2 + 3RQ2*5.54 (Equation 5.154)
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Figure 5.26 Error Entropy for Triple Structure with Shutdown
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The perfect case of errorless detection for a triple structure with full FDI exhibits a
dramatic improvement over single structure performance in terms of a longer average
mission before shutdown (i.e. the mission time where HE3pc = 0). Also, error variance
for any redundant structure is initially lower than for a single structure due to the averaging
of working controllers. The general performance of a triple structure with shutdown is
dependent upon the quality of the tests and proper design of the decision scheme
(Figure 5.26). For example, a triple structure with a poor simplex test (e.g. the TRS)
reaches an error variance much higher than that for a single structure. A second and final
decision stage, where the poor simplex test is not utilized and shutdown is initiated upon a
failed difference test,f.éan achieve lower error entropy than either a single or dual structure
over the entire mission H{E3pc,poor & HE3NS < HE2F2pc,poor & HE2NS < HEI &
HE1poor). Good results can also be obtained with a perfect simplex test and a poor duplex
test. Hence, full FDI for a triple structure with shutdown capability must incorporate a
near-perfect test in order to improve upon single structure performance. The passive
redundancy techniques of fault masking and majority-voting are obviously not meant for a

system with shutdown capability.

167




5.7. Conclusion

In this chapter, we seek to analyze all relevant a priori uncertainty or entropy within
the control system. The minimized Gaussian error function and the maximized exponential
reliability function provide a complete concept of all a priori knowledge of the control
structure. The marginal or conditional probabilities of the FDI schemes describe the
performance statistics associated with the redundant structure. The resultant set of system
states and their associated probabilities, as illustrated by the decision tree, represents all a

priori uncertainty in the control system.

Information theory defines entropy as a logarithmic measure of the randomness or
'choice’ involved in an-event or the prior uncertainty of the outcome of an experiment.
Entropy can be formulated from the probabilities of an exhaustive set of n possible events
or states (discrete case) or from the probability density function of a continuous distribution
(continuous case). The concept of entropy has a rich history that defies disciplinary
boundaries in its application. Its widespread application attests to its fundamental nature
and allows for linkage into a more comprehensive system representation of uncertainty by
incorporation of other system entropies. Thus, entropy is a measure of our a priori
knowledge or, more appropriately, lack of knowledge (i.e. ignorance/uncertainty) in terms
of the a priori probabilities. Further, this metric of uncertainty allows for comparisons of

the effective system performance for different redundant structures.

Shannon evaluated the performance of a general communication system in the
presence of noise. In this context, a control structure can be considered the channel which
attempts to communicate control needs to the process while contending with error or noise
sources inherent within the signal transmission. Due to these errors, it is not possible to

completely reconstruct the transmitted signal by any operation upon the received signal and
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information is lost. A system designer always tries to optimize the rate of transmission by
maximizing source information and by minimizing information losses due to interference.
A large bandwidth and signal-to-noise ratio (SNR) is desired for the source and a
minimized varian;:e is desired for the Gaussian noise or error in order to maximize the

information rate of the control structure.

Shannon found methods of transmitting or encoding the source signal which are
optimal in combating noise. By Shannon's Fundamental Theorem, if the entropy or
information of a source is less than the system's capacity, then there exists an encoding
scheme for transmission across the channel which achieves an arbitrarily small probability
of error. This is possible by sending the information in a redundant form and performing a
statistical analysis on the different received versions of the message. This reduction in
decision error causes é subsequent reduction in the lost information due to noise and,
hence, an increase in the rate of transmission for the channel. However, these benefits are
at a cost of increased complexity and either: hardware for physical redundancy, or delay for
repeated messages over the same channel. The cost of errorless transmission is infinite
communication channels or infinite delay time. Hence, it is not possible to transmit

information over a noisy channel without some probability of error.

A redundant structure can be considered the channel which attempts to correctly
determine or communicate the current state of the system while contending with error or
noise sources inherent within the decision. The system states and error sources possible
for a redundant structure can be identified by a decision tree. This decision tree also
represents explicitly the discrete communication or information channel for a redundant
structure. Due to decision errors in the FDI scheme, it is not possible to completely know
the current system state by any operation upon the parity vector and information can be

lost.
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The rate of information transmission across the discrete channel of the FDI decision
scheme is optimized by maximizing the mutual information between the input and output
states. First, the extent of our a priori or input knowledge H (X) is maximized. The
entropy of the exponential reliability distribution is defined by the MTBF. Hence, a more
reliaBle control structure with a greater MTBF is desired. Second, system or output
knowledge H (Y) is maximized by increasing the granularity or number of the output
system states. Entropy of the system state set exhibits a characteristic "humped" curve
which monotonically increases with the level of redundancy. However, the gains of this
additional knowledge cannot be realized (and can even be at a detriment) if it is
accompanied by poor utilization or transmission losses. The channel loss or uncertainty of
the FDI scheme must be minimized by approaching the ideal, matched transmission
scheme. Proper utilization of a redundant structure would also minimize the error variance
of the controlled parameter. This corresponds with the perfect-case of errorless decision.
A large failure signal-to-noise ratio (SNR) is required in order to approach the perfect-case.
The mean conditional entropy of the error or noise is found to decrease with each level of
redundancy when a near-optimal FDI scheme is employed. In conclusion, the optimal rate
of information transmission for the discrete FDI decision scheme of a redundant structure
for fault-tolerance is reached by utilizing a highly reliable control structure at the greatest
level of redundancy while maintaining near-perfect FDI at all levels of operation. This
allows maximizing the information rate of the FDI decision scheme while minimizing the
error variance of the controlled parameter. Further, the average mission or period of

working operation is increased.

170



Perfect and worst case fault detection are found to provide the highest rate of
information transmission, while poor or noisy fault detection has a zero transmission rate.
The Bayes criterion allows a higher information rate than the Neyman-Pearson criterion due
to its minimization of decision error. Higher information rates can be achieved with each
level of redundancy. Although duplex fault detection has a higher transmission rate
initially, duplex tests are outperformed by simplex tests beyond the MTBF due to their
inability to distinguish between dual and single failures. Hence, a full FDI decision scheme
is suggested for redundant structures which incorporates any quality simplex schemes in

order to improve fault tolerance.

For a redundant structure without shutdown capability, the perfect case of errorless
detection with full FDI exhibits a dramatic improvement with the level of redundancy in
terms of reduced error variance and a longer period of working operation due to increased
fault tolerance. Single structure performance is defined by HE1 irregardless of any
simplex tests. Error variance for a perfect redundant structure is initially lower due to the
averaging of working controllers and is only gradually increased upon switching to
successive stages of reduced operation. The relative improvement of the dual structure
over the single structure is dependent upon the quality of the simplex test. However, a
triple redundant structure of near-perfect triplex and duplex detection and poor simplex
detection (e.g. the TRS of Chapter 4) shows immediate improvement over single structure
performance. It also found to provide lower error entropy than both of the examined
passive redundancy techniques, although it does approach the performance of a fault
masking scheme as the mission progresses. Fault masking shows similar promise while
majority-voting is easily observed as undesirable. Hence, a triple structure without
shutdown capability can achieve significantly better performance than a single or dual

structure.
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For a system with zero shutdown cost and high false alarm cost, analysis of error
entropy allows determination of the relative merit of redundant structures. For example,
this cost analysis allows determination of whether a fault detection scheme is acceptable for
even a single control structure and, if so, when during the mission it should be utilized.
The perfect case of errorless detection with full FDI exhibits a dramatic improvement with
the level of redundancy in terms of reduced error variance and a longer period of working
operation due to increased fault tolerance. The general performance of a redundant
structure with shutdown is dependent dpon the quality of the tests and proper design of the
decision scheme. Results indicate the need to switch the FDI decision scheme for different
stages of the mission in all but the most perfect case. It is concluded that precedence for the
full FDI decision scheme should agree with the most probable state for the given mission
time (i.e. assume the dominant prior when designing the decision scheme). If any tests
should dominate the others in quality, then only they should be utilized throughout the
mission. Conversely, any tests of poor or worse quality are generally not utilized.
However, a redundant structure with shutdown capability must incorporate at least one
near-perfect test in order to improve upon single structure performance. The passive
redundancy techniques of fault masking and majority-voting are found to be inappropriate

for a system with shutdown capability.
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APPENDIX A

Example Error Analysis of a Control Structure

System Element

Error (%FS)

Sensor linearization 0.0111
Cold junction compensation 0.0222
Input RC filter "0.0001
Signal quality 0.2370
OP-07 amplifier 0.0370
CMOS multiplexer 0.0110
A/D converter - 0.0066
Intersample 0.0319
Sinc 0.0150
Aliasing 0.2205
Mean values 0.0484
RSS values 0.3276
Existing measurement error bound 0.3760 %FS
(6.77 °C)

Note: In addition to the above repeatability errors associated with the
temperature measurement, Omega Engineering documents the limits of error

of the Type-C Hoskins thermocouple from true temperature.

Temperature Range
0-425°C
425 -2320°C

Limits of Error

+ 4.5 °C of true temperature

+ 1 % of the reading
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Input V¢ = 0-31 mV from 0°C - 1800°C

Type C thermocouple, R = 100 Q
Sampled at f; =3.75 Hz

dVg 1
dt
.V
FSin

Signal BW

20°C  0.016 mV

- 60sec  °Cc g.31mV

= 0.05Hz

Vioise, = 190mVpy (672mVyp

at fcoherent

Vv
_ FSin )2
coherent — (V .

nmsein

Input SNR
( 31 mV )2
T Y67.2mV

= (.213 numerical
Sensor

0.2°C rated )

2 100 %
1800°C FS

Linearization error =

= 0.0111 %FS

0.4°C rated ]
1800°C

= 0.022 %FS

CIC error 100 %
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Filter error

where A(f)

BASIC Program

QOutput of Program

ignal li

Filter SNRc oherent

Amplitude Error

10f
fc fc
= 0 Y [1.0-A()]-100%
0
= 0.0001 %FS

21.9 Hz. input RC filter (RC =7.27 ms)

m Filter Error

100 SUM =0
110 BW =0.05

~-120 FC =21.922

130 FORI=1TO 10

140 X =1-1/(SQRA+(I*BW/(10*FC))*2)))
150 SUM=SUM+X

160 NEXT1I

170 SUM = (SUM/10) * 100

180 PRINT "Average Filter Error = ";SUM;" %FS"

Average Filter Error = 1.013279E-04 %FS

f
Input g - [1+(-E)7

= (0213) - [1+ (A e2Z V)

= 177,644 (1.87 x 10?2 prefiltered)

100 %
\/ SNR

oherent

= 0237 %ES (1 x 10” %FS prefiltered)
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Combined Internal Noise

V.
= f _Ims
V, = +4TR; - Tz (10)

-23
'\/(4) ( 1.38 ’iéo Ty (293°K) (100 Q)

1.27 nV
= —IMS  ermal noise

vHz

I.. V.
_ 9 bias ms
Ve = ©057x10% R\ 1% . BW * Vg b
9 3x10° A Vs
0.57 x 10%) + (100 Q)‘\IO.I%-BW >

i

nVv
= (0.1396 - \/II:ILnS contact noise
Z
- 18 nV
o Vo = g OP-O7amplifier
Z
0.8 AL g .
L, = __\[I—‘TE—— OP-07 amplifier
£ _ _ft_ Gain-Bandwidth Product of OP-07 amplifier 5
hio = A, Gain of OP-07 Amplifier (12)
where gain = Integrator period 16.67 ms/RC product 0.22 ms
- @%% = 7.92KHz
_ 2 2 2 2 2
VNrms = \[(vt FVHE +(V 2+ 2 R £y (13)
= \[(1.270V)3(0.139nV)?]-21.9kHz+[(18nV)?(0.8nV)?]:7.92kHz
= 1.602 pV
\% \Y 6.6 Vo 10.57 uV (14)
= « 0. = . u
. Npp Nims Vims
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Vs = 75 uV nulled
dv, 0.2 uv

oS _ < U °
ar AT 7 = o+ 10°C 20V
Tos - Rs = (0.8 nA) « (100 Q) 0.08 LV
VN = Combined Internal Noise 10.57 pv

PP

VES ot 2.349 V

f(AV) . T = (100 ppm) . W 3.1uVv
dA VFSout o 2349V
S - DT - = (5ppm) + (10°C) - = 1.55 uV
VRgg error at input . = 11.38 pV

Amplifier error =

\% =
FSOut

CMOS Multiplexer

Transfer error 0.010 %
Crosstalk 0.001 %
Leakage 0.001 %

Multiplexer error 0.011 %FS

Vieg * o—— + 100 % 0.037 %FS
RSS * V
Fsout

Vgs. - Ay 2.349V

in

4-Bit __A/D nverter

Differential nonlinearity % LSB 0.0030 %
Quantizing uncertainty % LSB 0.0030 %

Linearity tempco 2}26& 10°C  0.0020 %

A/D error 0.0066 %FS

181




Sampling

Intersample error

Sinc error

Aliasing error

V2.5 -BW.V
FSin | 1004 (15)
NG6-f -V ) ’
S FSout

V2 ) (0.05 Hz) (31 mV)

= . 100 %
V6 (3.75 Hz) (2.349 V) ?
= 0.0319 %FS
sin (”?W )
- .21_.[1-——1;];—\;—]-100% (16)
fS
cin (005 Ha)
___%_[1_ 3.75 Hz 1. 100 %
7(0.05 Hz)
3.75 Hz
= 0.015 %FS
V..
noise: mf_ -f
T 1 sinc (— cohy 1009 (17
FS. S

in £
1+( Q-fgﬁ)2

c
where m = 5334, a multiple of the sampling frequency

67.2 mV 1 inc 20002.5Hz - 20kHz

sinc (
21.9Hz)

) 100 %

(2.16) (0.0011) (0.928) (100 %)

0.2205 %FS (2 x 10° %FS prefiltered)
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Appendix B
System Entropy of Redundant Structures

With Respect to the Failure Time and Conditional Error Functions

This exercise is presented as a traditional analysis of the uncertainty inherent within
continuous distributions. A single and dual redundant control structure are reviewed with
respect to the failure time and conditional error functions for a given mission length T. The
measure function of Section 5.4 is included in order to provide a common basis for
uncertainty comparisons. It is found that structure entropy is increased with mission time T
and level of redundancy N. These results are concerned with the uncertainty of the exact
time of failure (i.e. the failure time function), but this is not typically a decision that is
made. A more relaxed decision is traditionally made regarding structure (un)reliability for a
given time t of the process or mission. Section 5.6 provides a system entropy analysis for

these more commonly made decisions with respect to the reliability distribution.

A joint or system entropy Hsystem(T), which represents all a priori uncertainty
inherent within a control structure for a given mission time T, can be formulated directly
from the entropy of the failure time density function f(t) for the structure and the mean
conditional entropy of the error function with respect to the structure failure time tf (as per

Equation 5.12c).

Hsystem(T) = HELFIT) = HEIT) + HEIKT)

A common measure function for the conditioned error and failure time density functions of
the DDRS is needed to define the zero position on the entropy scale in order to facilitate
uncertainty comparisons and formulation of a joint or system entropy. Intrinsically, zero
entropy represents the most certain or accurate distribution. A uniform measure function
m(x) = 1/Ax with Ax arbitrarily chosen to be 0.001%FS (representing an accuracy of

0.0005%FS) is defined to be the most certain or accurate distribution. It is standard
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engineering practice that 5 orders of magnitude difference can be considered relatively
unmeasurable or zero. Fullscale value for the failure time density function shall be the
mission time T, with a default value of T = o unless otherwise specified. The entropy
relative to this common measure function is determined by Equation 5.9 for the conditioned

error and failure time density functions is as follows:

H (el Both Structures Working) = log( —oi2ne )
0.001%FS{2
. . _ oy 2me
H (el Single Structure Working) = log( G.001%ES )

- - ing) = log( 200%ES | _
H(e) = H(el Neither Structure Working) = log( 5.001%ES ) = 122

H(EIT)

K (1) H A exp(- At)
-J f(t) log ) ot = -J?» exp(- At) lo 0.00001*T ot
0 0

5
(log(h) - AT - 1) exp(- AT) + log( ellqﬁ) )

All of the above equations assume independence of the two structures. Note that the
entropy is dimensionless within the logarithm due to the measure function. The first two
equations are derived directly from Shannon's entropy for a Gaussian distribution
(Equation 5.3) with application of the change in error deviation for redundant structures
(Equation 3.3). The third equation assumes a uniform conditioned error distribution over
all possible values (£ 100%FS) and is derived directly from Shannon's entropy for
uniform distributions (Equation 5.2). This equation also represents the error distribution
entropy with no knowledge of the working states of the dual structures. The l.ést equation
defines entropy for the failure time density function (Equation 3.6) and the given mission

time T. It is derived directly from Shannon's entropy for exponential distributions
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(Equation 5.4). As the mission time approaches +eo, H(f IT) = H(f) approaches -~ (i.e.

absolute certainty in the failure time relative to the total mission time).

The mean conditional entropy H (€ If,T) of the error function €(x) (Equation 5.17) is
defined as the uncertainty of the error for a given failure time tf and averaged over the
mission time T with respect to the failure time function f(t) (as per Equation 5.15¢). The
probability of the error for a given failure time can be defined from the component
probabilities of the error conditioned upon the reliability R(t) and unreliability Q(t) of the
control structure. The entropy of the error conditioned upon the reliability (Structure
Working) and unreliability (Structure Not Working) was derived above.

£ t,t)

—m ox ot

HE £,T) = I f(t) j ExIt,t ) log————
-FS

ExI tt.) = pEe=xltt) = pe=xIt<t)p(t<t) + pe= xIt2t)pt=ty)

= Gaussian (O,o)st(t) +

1
200%Es < &

Gaussian (0,0) 3% +

m(x)

Hel £T) = Jf(t) Ry(®) J.Gaussmn (0,0) log
-FS

1 1
f() Qs }J; 300%ES '8 200%ES meg) O

T
HE T = J' f(t) Rg(D H (el Structure Working) + £(t) Qq(t) H (el Structure Not Working) ot

T
H(£T) = log( 5320 ) J A exp(-2A0) 3t +
0

T
200%FS A1) = exp(-
log( 5201058 )Jx (exp(-Mt) - exp(-2A1)) At
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HE £T) = llog( 2"400?7“1:5 ) (1- exp(-2AT)) + 12.2 (1 - exp(-AT))

Note that the rpean conditional entropy is less than the unconditioned entropy for all T.

HE £,T) < H(e) = 12.2

Similarly, a joint or system entropy Hsystem(T), which represents all a priori
uncertainty inherent within the DDRS for a given mission time T, can be formulated
directly from the entropy of the failure time density functions f1(t) and f(t) for the two
redundant structures and the mean conditional entropy of the error function with respect to
the structure failure times tf; and tgp. All entropy is formulated with respect to an arbitrary
measure function m(x) in order to define a common zero point on the entropy scale

(Equation 5.9).

Hsysem(T) = HELHLIT) = H(f1IT) + H(f2If1,T) + H(E If1,£,T)

The uncertainty H(f; If], T) of the failure time function fa(t) for the second control structure
over a given mission time T conditioned on the knowledge of the failure time tf; for the first
structure is equivalent to the unconditioned entropy of the failure time since the

performance of the two structures is independent.

5
H(S, I, T) = 34T, IT) = (log) = AT - 1) exp(-AT) +log( £20-)

This increase in system entropy is replicated (linearly proportional) with each additional
level of redundancy. The mean conditional entropy H(€ If1,f2,T) of the error function €(x)
is defined by its component entropies which are further conditioned upon the state of the

system: both structures working, single structure working, neither structure working.
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ExI t,ty,tp)

H(el £,£,T) = ” £t,) f(tz)JS(xI bigtp) log —— 1

ox at2 atl

Ex g ty) = pE=xIt<t,,t<t)pt<t,t<ty) +
ple=xlt<t,,t2t )pt<ty, t2t,) +

p(8=xltZtﬂ,t<tf2)p(tZtﬂ,t<tQ) +

pe=xlt2 tep t2 tfz) pt=ty,t2 tf2)

- . KR 2 .
Exl Ltote) Gaussian (0, 5) X Ry(t) + Gaussian (0,0) X 2Ry(1) Qq(t) + momoe=r 300%ES 7 S

el f,0D = [ ) ) [Ry(t,) Ry(t,) 358l Both Structures Working) +
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. The standard deviation of the example error budget (0.3276%FS, Figure 2.4) and the
failure rate of the example reliability budget (0.000142, Figure 3.7) are used in producing
Figures B.1 - B.5.
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As presented in Figures B.1 and B.4, entropy is increased for longer mission times
with respect to the failure time function and the error function conditioned on the failure
time. This épplication of entropy represents the uncertainty of the exact time of failure of
each structure and of the exact amount of error given the failure time. The introduction of
the measure function m(x) (Figure B.2) provides an exception for very short/long mission
times where it is impossible/easy to define the exact failure time with respect to the mission
time (Figure B.3). Thus, the entropy decreases with an increase in mission time for very
small/long mission times. However, the time interval of interest is for mission times about

the MTBF (i.e. 293 days for the example failure rate used).

As presented in Figures B.4 ; B.S, entropy is also increased for an additional level
of redundancy with respect to the failure time funétion and the error function conditioned
on the failure time. This result seems reasonable since we would expect additional
uncertainty with each additional structure of uncertain reliability. Due to the independence
assumption for redundant structures, this increase in the failure time entropy is linearly
proportional to the level of redundancy. This increase in entropy is also apparent in the
conditional error function (Figure B.4) except in missions of a short period where the
reduction in error variance plays a key role. Regardless, the joint or system entropy of the

control structure is increased with redundancy for all mission times (Figure B.5).

The key point of this application is the use of the failure time function as the basis
for the system uncertainty. However, the exact time of a structure failure is not typically a
decision made for a given mission or process. The more relaxed decision of structure
(un)reliability at a given time of the process (i.e. the possibility of a failure occurring
before/after the given time) is the more conventional application of this knowledge.
Section 5.6 provides a joint or system entropy of the control structure for a given time t
based on the binary (un)reliability event set and the continuous error function conditioned

upon these events.

190




Appendix C
Matlab Programs

% Calculation of Threshold T and probability of error pE
% over time t for DDRS fault detection and isolation
%  under Bayes and Neyman-Pearson criteria

% Matlab program, Victor J. Hunt (9/91)

sigma = .3276*sqrt(2);
lamda = .000142%24;
= 5*sigma;

for i=1:1600, t(d) = 1;

%Prior:Event 0
EO(i) = exp(-2*lamda*i);

%Threshold by Bayes criterion

%T() = f/2 + sigma*sigma*log(EO(i)/(1-E0(@)))/f;
%if T(1) < 0, T@A) = O0; end;

%if T(i) > 100, T(i) = 100; end;

%Threshold by NP criterion
T(i) = 3*sigma;

%Prior:Event 2
E2(31) = (.01*T(@) - T(i)*2/40000)*((1-exp(-1*lamda*i))"2);

% Conditionals
p00(i) = erf(T(i)/(sigma*sqrt(2)));
pl0(i) = 1-p00(@i);

p01(i) = 0.5*(erf((T(i)-f)/(sigma*sqrt(2))) - erf(-
1*(T(1)+f)/(sigma*sqrt(2))));
pl1(i) = 1-p01@);

%Prob.of Error for fault detection

pEO(i) = E0(i)*p10Gi); %false alarm
pE2(i) = E2(i)*p00(i); %missed detection
pE1(i) = (1-E0(G)-E2(i))*p01(i); %missed detection

pEd(@i) = pEOG)+pE1(1)+pE2(i);
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%Prob.of Error for fault isolation
%pEi(i) = (1 - .02*T(@) - T(i)72/10000)*((1-exp(-1*lamda*i))*2)*p11(i)
+ %E2(i)*p10(i) + (exp(-1*lamda*i) - EO0(i))*p11(i);

%Total prob.of error
%pE(i) = pEd@) + pEi(i);

end;
% Calculation of Threshold T and probability of error pE
% over increasing f and time t for DDRS fault detection

% under Bayes and Neyman-Pearson criteria

% Matlab program, Victor J. Hunt (9/91)

sigma = .3276*sqrt(2);
lamda = .000142*24,
for j=1:10 % Ten different f magnitudes

f = 0.5*j*sigma;

%Threshold & Conditionals for NP criterion (constant)

T = 3*sigma;

p00 = erf(T/(sigma*sqrt(2)));

p01 = 0.5*%(erf((T-f)/(sigma*sqrt(2))) - erf(-1*(T+f)/(sigma*sqrt(2))));

pl0 = 1 - p0O0;
pll =1 - p01;
for i=1:1600 % Mission length = 1600 days

%Prior: Event 0

E0 = exp(-2*lamda*i);

%Threshold for Bayes criterion

%T(j,i) = f/2 + sigma*sigma*log(E0/(1-E0))/f;
%if T(j,i) < 0, T(G,i) = O; end;

%if T(j,i) > 100, T(j,i) = 100; end;

E2 = (.01*T - TA2/40000)*((1-exp(-1*lamda*i))"2);
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%Conditionals for Bayes criterion

%p00 = erf(T(j,i)/(sigma*sqrt(2)));

%p01 = 0.5*(erf((T(j,i)-f)/(sigma*sqrt(2))) - %erf(-
1%(T(j,i)+f)/(sigma*sqrt(2))));

%pl0 = 1 - p00;

%pll =1 - p01;

%Prob.of Error
pE(,i) = EO*p10 + E2*p00 + (1-E0-E2)*p01;

end;
end;

% Calculation of two estimates (T1,T2) for Circular Threshold T
% and probability of error pE over time t for TRS fault
%  detection under Bayes criteria

% Matlab program, Victor J. Hunt (9/91)

sigma = .3276;
lamda = .000142%*24,
f = S*sigma*sqrt(2);
F = f*sqrt(2/3);

for i=1:1600, td) = i;

%%Prior:Event 0
E0 = exp(-3*lamda*i); r = exp(-lamda*i);

%Two Threshold estimates under Bayes criterion
T1(i) = sqrt(F*F/2 + sigma*sigma*log(E0/(1-E0)));
T22 = F*F/2 + (sigma*sigma*6/f/f + 2)*sigma*sigma*log(E0/(1-E0));

if T22 < 0, T2(i) = 0;
else T2(1i) = sqrt(T22);
end;

%Prior:Event 2

E21 = 9*T1(i)A2/80000%(3*r*(1-r)A2);
E22 = 9*T2(i)*2/80000*(3*r*(1-r)A2);
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%Prior:Event 3
E31 = 0.536*T1(i)*T1(i)*2/1000000*((1-r)*(1-1)"2);
E32 = 0.536*T2(i)*T2(i)*2/1000000*((1-1)*(1-r)*2);

% Conditionals

pl01(i) = exp(-1*T1(i)*2/2/sigma/sigma);

p011(i) = 0.5*(erf((T1(i)-F)/(sigma*sqrt(2))) - erf(-
1*(T1(1)+F)/(sigma*sqrt(2))));

pl02(1) = exp(-1*T2(i)*2/2/sigma/sigma);
p012(i) = 0.5*(erf((T2(i)-F)/(sigma*sqrt(2))) - erf(-
1*(T2(1)+F)/(sigma*sqrt(2))));

%Prob.of Error for fault detection

pEO1(i) = EO*p101(i); %false alarm
pE21(i) = E21*(1-p101(i)); %missed detection
pE31(i) = E31*(1-p101(i)); %missed detection
pE11(i) = (1-E0-E21-E31)*p011(i); %missed detection
pEd1(i) = pEO1(i)+pE11(i)+pE21(i)+pE31(i);

pE02(i) = EO*p102(i); %false alarm
pE22(i) = E22*(1-p102(1)); %missed detection
pE32(i) = E32*(1-p102(i)); %missed detection
pE12(i) = (1-E0-E22-E32)*p012(i); %missed detection

pEd2(i) = pEO02(i)+pE12(i)+pE22(i)+pE32(i);

end;

% Calculation of state HS, error HE, and total system HT
% entropies over time for single, dual, and triple

% redundant structures w/o FDI or reconfiguration

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)

e = 2.718282;
sigma = .3276; %Single structure error deviation
lamda = .000142%*24; %Single structure failure rate

194




for i=1:1600, t(d) = i;

%Reliability and Unreliability for Single Structure
r(i) = exp(-1*lamda*i); q(i) = 1-r(i);

%Single Structure Entropy

HS1(1) = -1*1(i)*log(r(i)) - q(i)*log(q(i));
HE1(@) = r(i)*log(sqrt(3)) +
q(i)*1og(200*sqrt(3/2)/(sigma*sqrt(pi*e)));
HT1({) = HSI1@G) + HE1();

%Dual Structure Entropy

HS2(1) = -1*r()M2*log(r(i)*2) - 2*1(i)*q(i)*log(2*r(i)*q(i)) -
q(i)*2*1og(q(i)*2); '

HE2(1) = r(i)M2*log(sqrt(3/2)) +
2*r(i)*q(i)*log(100*sqrt(3/2)/(sigma*sqrt(pi*e))) +
q(i)*2*1og(100/(sigma*sqrt(2)));

HT2(i) = HS2(i) + HE2(i);

%Triple Structure Entropy

HS3(1) = -1*r(i)*3*log(r(i)*3) - 3*q(i)*r(i)"2*log(3*q@i)*r()"2) -
3*1(i)*q(i)"2*log(3*r(i)*q(i)*2) - q(i)*3*log(q(D)*3);

HE3(@) = 3*q(i)*r(i)"2*log(100*sqrt(2/3)/(sigma*sqrt(pi*e))) +
3*r(i)*q(i)A2*1og(100*sqrt(2)/(3*sigma)) +
q(i)A3*1og(100/(sigma*sqrt(3)));

HT3(i) = HS3(i) + HE3(i);

%Worst-case Conditional Error Entropy
HE(G) = log(200*sqrt(3/2)/(sigma*sqrt(pi*e)));

end;

end;

% Calculation of error HE entropy over time t for
% Single structure with FDI which is: poor,
% - worst-case, and perfect-case

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS
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% Matlab program, Victor J. Hunt (10/91)
lamda = .000142%24; %Single structure failure rate
for i=1:1600, t(i) = i;

%Reliability and Unreliability for Single Structure
r = exp(-1*lamda*i); q = 1-r;

%Poor FDI case (pii = pij = .5)

HS2p(i) = -1*rA2*0.5*log(r*2*0.5) - gq*r*log(q*r) - (r"2*0.5 +
q*r*0.5)*log(r*2*0.5 + q*r*0.5) - (q@*2*0.5 + q*r*0.5)*log(q"2*0.5 +
q*r*0.5) - q*2*0.5*log(q*2*0.5);

%Cond.Error Entropy

HE2p(i) = 1A2*0.5*log(sqrt(3/2)) +
q*r*log(100*sqrt(3/2)/(sigma*sqrt(pi*e))) + ("2*0.5 +
q*r*0.5)*log(sqrt(3)) + (q*2*0.5 +
q*r*0.5)*1og(200*sqrt(3/2)/(sigma*sqrt(pi*e))) +
q"2*0.5*1og(100/(sigma*sqrt(2)));

%Total Entropy
HT2p(i) = HS2p(i) + HE2p(i);

%Worst case (pii=0,pij=1)
%HS2wc(i) = HS2(i);
HS2(i) = -1*rA2*log(r2) - 2*r*q*log(2*r*q) - q2*log(g"2);

%Cond.Error Entropy
HE2wc(i) = 2*g*r*log(100*sqrt(3/2)/(sigma*sqrt(pi*e))) +
r"2*log(sqrt(3)) + q2*log(100/(sigma*sqrt(2)));

%Total Entropy
HT2wc(i) = HS2(i) + HE2wc(i);

%Perfect case
%HS2pc(i) = HS2(i);

%Cond.Error Entropy

HE2pc(i) = 12*log(sqrt(3/2)) + 2*q*r*log(sqrt(3)) +
q"2*log(100/(sigma*sqrt(2)));

196



%Total Entropy
HT2pc(i) = HS2(i) + HE2pc(i);

end;

% Calculation of error HE entropy over time t for

Y% Single structure with possible shutdown and
% with FDI which is: poor, worst-case, and
Y% perfect-case

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)
lamda = .000142%24; %Single structure failure rate
for i=1:1600, ti) = i;

%Reliability and Unreliability for Single Structure
r = exp(-1*¥lamda*i); q = 1-r;

%Poor FDI case (pii = pij = .5)
HE1p@i) = 0.5*r*0.55 + 0.5*q*5.54;

%Worst case (pii=0,pij=1)
HElwc(i) = q*5.54;

%Perfect FDI
HElpc(i) = r*0.55;

end;

% Calculation of error HE entropy over time t for

% Single structure with possible shutdown,
% false alarm cost = missed detection cost,
% and with FDI which is: poor, worst-case,
% and perfect-case
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% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)
lamda = .000142%24; %Single structure failure rate
for i=1:1600, t(i) = 1;

%Reliability and Unreliability for Single Structure
r = exp(-1*lamda*i); q = 1-r;

%Poor FDI case (pii = pij = .5)
HE1p2(i) = 0.5*r*6.09 + 0.5*%q*5.54;

%Worst case (pii=0,pij=1)
HE1lwc2(i) = 5.54;

%Perfect FDI
HElpc2(i) = r*0.55;

end;
% Calculation of state HS, error HE, and total system HT
% entropies over time t for Dual structure (DDRS)

% with FDI under Bayes and Neyman-Pearson criteria

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)

e = 2.718282;
sigma = .3276; %Single structure error deviation
lamda = .000142%24; %Single structure failure rate

f = S*sigma*sqrt(2);
for i=1:1600, t(i) = i;

%Priors
r = exp(-1¥lamda*i); q = 1-1;
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%Event 0
EO0 = exp(-2*lamda*t(i));

%Threshold by Bayes

T = /2 + sigma*sigma*2*log(rA2/(1-1"2))/f;
%if T< 0,T= 0;end;

%if T > 100, T = 100; end;

%Threshold by Neyman-Pearson
%T = 3*sigma*sqrt(2);

%Priors: Dual Faults
dl = g"2*(.01*T - TA2/40000);
d2 = g"2*(1-(.01*T - T~2/40000));

% Conditionals

p00 = erf(T/(sigma*2));

pl0 = 1-p00;

p01 = 0.5*(erf((T-f)/(sigma*2)) - erf(-1*(T+f)/(sigma*2)));
pll = 1-p01;

%Dual Structure Entropy with FDI & restructure to Single Structure

%Channel Outcome Entropy

HY2b(@i) = -1*@"2*p00 + 2*r*q*p01 + d1*p00 + d2*p01)*log(x*2*p00 +
2*r*q*p01 + d1*p00 + d2*p01) - (rA2*p10 + 2*r*q*pll + d1*p10 +
d2*p11)*log(r"2*p10 + 2*r*q*pll + d1*pl0 + d2*pll);

%Cond. Channel Entropy

HC2b(i) = -1*r"2*(p00*log(p00) + p10*log(pl0)) -
2*q*r*(p01*log(p01) + pli*log(pll)) - d1*(p00*log(p00) +
pl0*log(pl0)) - d2*(pll*log(pll) + p01*log(p01));

%Total Rate
RT2b(i) = HY2b(i) - HC2b(i);

%State Entropy

HS2b(i) = -1*rA2*p00*log(rA2*p00) - 2*q*r*p01*log(2*q*r*p01) -
(@"2*p10 + q*r*pl1)*log(r"2*pl0 + gq*r*pll) - (d1*pl0 + d2*pll +
q*r*p11)*log(d1*pl0 + d2*pll + q*r*pll) - (d1*p00 +
d2*p01)*log(d1*p00 + d2*p01);
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%Cond.Error Entropy
HE2b(i) = rA2*p00*0.2 + 2*q*r*p01*4.85 + (1"2*pl10 + g*r*p11)*0.55 +
(d1*p10 + d2*pll + q*r*pl1)*5.54 + (d1*p00 + d2*p01)*5.37;

%Total Entropy
HT2b(@i) = HS2b(i) + HE2b(i);

end;
% Calculation of state HS, error HE, and total system HT
Y% entropies over time t for Dual structure (DDRS)

% with FDI which is: poor, worst, and perfect-case

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)

e = 2.718282;
sigma = .3276; %Single structure error deviation
lamda = .000142%24; %Single structure failure rate

for i=1:1600, t(i) = i;

%Reliability and Unreliability for Single Structure
r = exp(-1*lamda*i); q = 1-1;

%Poor FDI case (pii = pij = .5)

%Outcome Entropy

HY2p(i) = log(2);

%Cond. Entropy

HC2p(i) = log(2);

%State Entropy

HS2p(@i) = -0.5*%r"2*log(0.5*r"2) - r*q*log(r*q) - 0.5*q"2*10g(0.5*q"2) -
0.5*(r"2 + r*q)*log(0.5*(r"2 + r*q)) - 0.5*%(q"2 + r*q)*log(0.5*(q"2 +
1*q));

% Cond.Error Entropy

HE2p(i) = 1"2*0.1 + r*q*4.85 + q"2*2.685 + ("2 + r*q)*0.275 + ("2 +
r*q)*2.77;

%Total Entropy

HT2p(i) = HS2p(i) + HE2p(i);
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%Worst case (pii=0,pij=1)

%Outcome Entropy

HY2wc(i) = -1*¥rA2*log(r2) - (2*r*q + q*2)*log(2*r*q + q/2);
%State Entropy

HS2wc(i) = -1*rA2*log(rA2) - 2*r*q*log(2*r*q) - q*2*log(q"2);
%Cond.Error Entropy

HE2wc(i) = rA2*0.55 + 2*r*q*4.85 + q2*5.37,

%Total Entropy

HT2wc(i) = HS2wc(i) + HE2wc(i);

%Perfect FDI

%State Entropy

HS2pc(i) = -1*r"2*log(r"2) - r*q*log(r*q) - (1*q + q*2)*log(r*q + q2);
%Cond.Error Entropy

HE2pc(i) = r22%0.2 + r*q*0.55 + (r*q + q"2)*5.54;

%Total Entropy

HT2pc(i) = HS2pc(i) + HE2pc(i);

end;
% Calculation of information rate RT and error entropy HE
% over time t for Dual structure (DDRS) with Full FDI

% which is: poor, worst, perfect, and perfect/poor

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)

e = 2.718282; |
sigma = .3276; %Single structure error deviation
lamda = .000142%24; %Single structure failure rate

for i=1:1600, tGd) = i;

%Reliability and Unreliability for Single Structure
r = exp(-1*¥lamda*i); q = 1-1;
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%Poor FDI case (pii = pij = .5)

%Cond.Error Entropy

HE2F1p(i) = r*2*0.025 + r*q*1.213 + gq*2*0.671 + ("2 + r*q)*0.481 +
(g2 + r*q)*4.85;

%Worst case (pii=0,pij=1)
%Cond.Error Entropy
HE2F1wc(i) = 12*0.55 + 2*r*q*5.54 + q/2*5.37,

9%Perfect FDI
%Cond.Error Entropy
HE2F1pc(i) = 1"2*0.2 + 2*r*q*0.55 + qA2*5.54,

%Perfect Duplex, Poor Simplex
% Cond.Error Entropy
HE2F1pcp(@i) = r2*0.05 + (1"2*0.75 + r*q)*0.55 + (g2 + r*q)*5.54;

%Poor Duplex, Perfect Simplex

JoRate

RT2F2ppc(i) = -1*(1-q*2)*0.5*log(1-q"2) - q*2*0.5*log(q"2);
RT2F1ppc(i) = -1*1A2*0.5*log(1"2) - (2*r*q + r"2*0.5)*log(2*r*q +
"2*0.5) - q2*log(q"2);

%Cond.Error Entropy

HE2F2ppc(i) = rA2*0.1 + r*q*4.85 + g*2*2.685 + (12 + 2*r*q)*0.275 +
qr2*2.77;

HE2F1ppc(i) = r72*0.1 + (172*0.5 + 2*r*q)*0.55 + q"\2*5.54,

end;
% Calculation of error entropy HE over time t for Dual
% structure (DDRS) with Shutdown and with Full FDI

% which is: poor, worst, perfect, and perfect/poor

% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)

e = 2.718282;
sigma = .3276; %Single structure error deviation
lamda = .000142*24; %Single structure failure rate
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for i=1:1600, t@i) = i;

%Reliability and Unreliability for Single Structure
r = exp(-1*¥lamda*i); q = 1l-1;

%Poor FDI case (pii = pij = .5)

%Cond.Error Entropy

HE2FOp(i) = r72*0.2/8 + r*q*4.85/4 + q"2*5.37/8 + (1"2*3/4 +
r*q*11/16)*0.55 + (q*2*6/8 + r*q*17/16 + 1 2/8)*5.54;

HE2F1p(i) = r2*0.2/8 + r*q*4.85/4 + q"2*5.37/8 + ("2 +

r*q)*0.55*5/8 + (q2*5 + r*q*9 + r/2*2)*5.54/8;

HE2F2p(i) = m2*0.2/2 + r*q*4.85 + q"2*5.37/2 + (1"2 + r*q)*0.55*3/8 +
(qA2*3 + r*q*5 + 112)*5.54/8,;

HE2F3p(i) = (2*r*q + 1°2)*5.54;

%Worst case (pii=0,pij=1)

%Cond.Error Entropy

HE2F1wc(i) = (2 + 2¥r*q)*5.54 + q2*5.37,
HE2F2wc(i) = 1A2%5.54 + 2*r*q*4.85 + q/2*5.37,

%Perfect FDI
% Cond.Error Entropy
HE2F1pc(i) = r"2*0.2 + 2*r*q*0.55;

%Perfect Duplex, Poor Simplex

%Cond.Error Entropy

HE2F1pcp(i) = r72*%0.2/4 + (tA2*2 + r*q*3)*0.55/4 + (q"2*3 + r*q*5
+112)*5.54/4;

HE2F2pcp(i) = rA2*0.2 + r*q*6*0.55/8 + (q"2*3 + r*q*5)*5.54/4;
HE2F3pcp(i) = 122*0.2 + 2*r*q*5.54;

%Poor Duplex, Perfect Simplex

%Cond.Error Entropy

HE2F1ppc(i) = r2%0.1 + (1"2*0.5 + 2*r*q)*0.55;

HE2F2ppc(i) = 12*0.1 + r*q*4.85 + q*2*5.37/2 + (1"2 + 2*r*q)*0.55/2;

end;

% Calculation of error entropy HE and total system rate RT
% over time t for Triple Redundant Structure (TRS) with
% masking, averaging, and ideal FDI
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% Entropy measure function = Gaussian Function of the
% Conditional Error for Operational TRS

% Matlab program, Victor J. Hunt (10/91)
lamda = .000742%24; %Single structure failure rate
for i=1:1600, t(i) = i;

%Priors
r = exp(-1*lamda*i); q = 1-1;

%Voting or Averaging Scheme (no decisions made)
%Cond.Error Entropy
HE3v(i) = 3*q*r"2*4.45 + 3*r*qA2*4.97 + qA3*5.17,

%Fault Masking Scheme (no decisions made)
%Cond.Error Entropy
HE3m(@) = ("3 + 3*q*r"2 + r*q*2)*0.55 + (2*r*q"2 + gq"3)*5.54;

%Perfect TRS, Poor Simplex

%Information Rate

RT3pcp(i) = -1*r*3*log(r”3) - 3*q*r"2*log(3*q*r 2) - (3*r*q"2 +
q"3)*log(3*r*q"2 + q"3);

%Cond.Error Entropy

HE3pcp(i) = 3*q*r"2*0.2 + r*q"2*0.55 + (2*r*q"2 + q/3)*5.54;
%Cond.Error Entropy with No Cost for Shutdown

HE3pcp2(i) = 3*q*r"2*0.2 + r*q"2*0.413 + (O*r*q"2 + 3*q"3)*1.39;

%Perfect Full FDI

%Information’ Rate

%R T3pc(i) = HS3(i);

%Cond.Error Entropy

HE3pc(i) = 3*q*r"2*0.20 + 3*r*q"2*0.55 + q3*5.54;
%Cond.Error Entropy with No Cost for Shutdown
HE3pc2(@i) = 3*q*r"2*0.20 + 3*r*q"2*0.55;

%Perfect TRS, No Simplex
%Cond.Error Entropy with No Cost for Shutdown
HE3NS(i) = 3*q*r’2*0.20 + 3*r*q"2*5.54;

end;

204




